Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 27;39(9):095007.
doi: 10.1088/1361-6579/aadf0c.

Detection of acute periodontal pain from physiological signals

Affiliations

Detection of acute periodontal pain from physiological signals

Daniel Teichmann et al. Physiol Meas. .

Abstract

Objective: To investigate the feasibility of the detection of brief orofacial pain sensations from easily recordable physiological signals by means of machine learning techniques.

Approach: A total of 47 subjects underwent periodontal probing and indicated each instance of pain perception by means of a push button. Simultaneously, physiological signals were recorded and, subsequently, autonomic indices were computed. By using the autonomic indices as input features of a classifier, a pain indicator based on fusion of the various autonomic mechanisms was achieved. Seven patients were randomly chosen for the test set. The rest of the data were utilized for the validation of several classifiers and feature combinations by applying leave-one-out-cross-validation.

Main results: During the validation process the random forest classifier, using frequency spectral bins of the ECG, wavelet level energies of the ECG and PPG, PPG amplitude, and SPI as features, turned out to be the best pain detection algorithm. The final test of this algorithm on the independent test dataset yielded a sensitivity and specificity of 71% and 70%, respectively.

Significance: Based on these results, fusion of autonomic indices by applying machine learning techniques is a promising option for the detection of very brief instances of pain perception, that are not covered by the established indicators.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources