Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers
- PMID: 30186185
- PMCID: PMC6111240
- DOI: 10.3389/fphar.2018.00971
Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers
Abstract
Delivery of genes, including plasmid DNAs, short interfering RNAs (siRNAs), and messenger RNAs (mRNAs), using artificial non-viral nanotherapeutics is a promising approach in cancer gene therapy. However, multiple physiological barriers upon systemic administration remain a key challenge in clinical translation of anti-cancer gene therapeutics. Besides extracellular barriers including sequestration of gene delivery nanoparticles from the bloodstream by resident organ-specific macrophages, and their poor extravasation and tissue penetration in tumors, overcoming intracellular barriers is also necessary for successful delivery of nucleic acids. Whereas for RNA delivery the endosomal barrier holds a key importance, transfer of DNA cargo additionally requires translocation into the nucleus. Better understanding of crossing membrane barriers by nucleic acid nanoformulations is essential to the improvement of current non-viral carriers. This review aims to summarize relevant literature on intracellular trafficking of non-viral nanoparticles and determine key factors toward surmounting intracellular barriers. Moreover, recent data allowed us to propose new interpretations of current hypotheses of endosomal escape mechanisms of nucleic acid nanoformulations.
Keywords: endosomal escape; gene delivery; intracellular trafficking; lipoplexes; polyplexes; siRNA delivery.
Figures



Similar articles
-
Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics.Adv Drug Deliv Rev. 2022 Feb;181:114041. doi: 10.1016/j.addr.2021.114041. Epub 2021 Nov 8. Adv Drug Deliv Rev. 2022. PMID: 34763002 Review.
-
Super-resolution Imaging of Proton Sponge-Triggered Rupture of Endosomes and Cytosolic Release of Small Interfering RNA.ACS Nano. 2019 Jan 22;13(1):187-202. doi: 10.1021/acsnano.8b05151. Epub 2019 Jan 2. ACS Nano. 2019. PMID: 30566836
-
Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer.Adv Drug Deliv Rev. 2017 Jun 1;115:98-114. doi: 10.1016/j.addr.2017.03.004. Epub 2017 Apr 7. Adv Drug Deliv Rev. 2017. PMID: 28396204 Review.
-
Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis.ACS Nano. 2013 May 28;7(5):3767-77. doi: 10.1021/nn3049494. Epub 2013 Apr 24. ACS Nano. 2013. PMID: 23597090
-
Non-viral nucleic acid containing nanoparticles as cancer therapeutics.Expert Opin Drug Deliv. 2016 Oct;13(10):1475-87. doi: 10.1080/17425247.2016.1190707. Epub 2016 Jun 6. Expert Opin Drug Deliv. 2016. PMID: 27248202 Free PMC article. Review.
Cited by
-
mRNA-Based Vaccines.Vaccines (Basel). 2021 Apr 15;9(4):390. doi: 10.3390/vaccines9040390. Vaccines (Basel). 2021. PMID: 33921028 Free PMC article. Review.
-
Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes.ACS Appl Mater Interfaces. 2022 Jul 6;14(26):30371-30384. doi: 10.1021/acsami.2c06065. Epub 2022 Jun 27. ACS Appl Mater Interfaces. 2022. PMID: 35758331 Free PMC article.
-
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications.Membranes (Basel). 2022 May 25;12(6):550. doi: 10.3390/membranes12060550. Membranes (Basel). 2022. PMID: 35736256 Free PMC article. Review.
-
Novel hybrid silicon-lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans.Mol Ther Nucleic Acids. 2023 Aug 19;33:925-937. doi: 10.1016/j.omtn.2023.08.020. eCollection 2023 Sep 12. Mol Ther Nucleic Acids. 2023. PMID: 37680985 Free PMC article.
-
Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes.ACS Nano. 2020 Apr 28;14(4):4444-4455. doi: 10.1021/acsnano.9b10033. Epub 2020 Apr 16. ACS Nano. 2020. PMID: 32282185 Free PMC article.
References
-
- Becker M. L., Fagan J. A., Gallant N. D., Bauer B. J., Bajpai V., Hobbie E. K., et al. (2007). Length-dependent uptake of DNA-wrapped single-walled carbon nanotubes. Adv. Mater. 19 939–945. 10.1002/adma.200602667 - DOI
-
- Bishop C. J., Majewski R. L., Guiriba T.-R. M., Wilson D. R., Bhise N. S., Quiñones-Hinojosa A., et al. (2016). Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry. Acta Biomater. 37 120–130. 10.1016/j.actbio.2016.03.036 - DOI - PMC - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources