Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 10;18(10):6387-6391.
doi: 10.1021/acs.nanolett.8b02743. Epub 2018 Sep 11.

Near Length-Independent Conductance in Polymethine Molecular Wires

Affiliations

Near Length-Independent Conductance in Polymethine Molecular Wires

Suman Gunasekaran et al. Nano Lett. .

Abstract

Polymethine dyes are linear π-conjugated compounds with an odd number of carbons that display a much greater delocalization in comparison to polyenes that have an even number of carbon atoms in their main chain. Herein, we perform scanning tunneling microscope based break-junction measurements on a series of three cyanine dyes of increasing length. We demonstrate, at the single molecule level, that these short chain polymethine systems exhibit a substantially smaller decay in conductance with length (attenuation factor β = 0.04 Å-1) compared to traditional polyenes (β ≈ 0.2 Å-1). Furthermore, we show that by changing solvent we are able to shift the β value, demonstrating a remarkable negative β value, with conductance increasing with molecular length. First principle calculations provide support for the experimentally observed near-uniform length dependent conductance and further suggest that the variations in β with solvent are due to solvent-induced changes in the alignment of the frontier molecular orbitals relative to the Fermi energy of the leads. A simplified Hückel model suggests that the smaller decay in conductance correlates with the smaller degree of bond order alternation present in polymethine compounds compared to polyenes. These findings may enable the design of molecular wires without a length-dependent decay for efficient electron transport at the nanoscale.

Keywords: Polymethine; conductance decay; cyanine; molecular wires; single-molecule.

PubMed Disclaimer

Publication types

LinkOut - more resources