Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;46(12):e1105-e1111.
doi: 10.1097/CCM.0000000000003385.

Seizure Identification by Critical Care Providers Using Quantitative Electroencephalography

Affiliations

Seizure Identification by Critical Care Providers Using Quantitative Electroencephalography

Saptharishi Lalgudi Ganesan et al. Crit Care Med. 2018 Dec.

Abstract

Objectives: To compare the performance of critical care providers with that of electroencephalography experts in identifying seizures using quantitative electroencephalography display tools.

Design: Diagnostic accuracy comparison among healthcare provider groups.

Setting: Multispecialty quaternary children's hospital in Canada.

Subjects: ICU fellows, ICU nurses, neurophysiologists, and electroencephalography technologists.

Intervention: Two-hour standardized one-on-one training, followed by a supervised individual review of 27 continuous electroencephalography recordings with the task of identifying individual seizures on eight-channel amplitude-integrated electroencephalography and color density spectral array displays.

Measurements and main results: Each participant reviewed 27 continuous electroencephalograms comprising 487 hours of recording containing a total of 553 seizures. Performance for seizure identification was compared among groups using a nested model analysis with adjustment for interparticipant variability within groups and collinearity among recordings. Using amplitude-integrated electroencephalography, sensitivity for seizure identification was comparable among ICU fellows (83.8%), ICU nurses (73.1%), and neurophysiologists (81.5%) but lower among electroencephalographic technologists (66.7%) (p = 0.003). Using color density spectral array, sensitivity was comparable among ICU fellows (82.4%), ICU nurses (88.2%), neurophysiologists (83.3%), and electroencephalographic technologists (73.3%) (p = 0.09). Daily false-positive rates were also comparable among ICU fellows (2.8 for amplitude-integrated electroencephalography, 7.7 for color density spectral array), ICU nurses (4.2, 7.1), neurophysiologists (1.2, 1.5), and electroencephalographic technologists (0, 0) (p = 0.41 for amplitude-integrated electroencephalography; p = 0.13 for color density spectral array). However, performance varied greatly across individual electroencephalogram recordings. Professional background generally played a greater role in determining performance than individual skill or electroencephalogram recording characteristics.

Conclusions: Following standardized training, critical care providers and electroencephalography experts displayed similar performance for identifying individual seizures using both amplitude-integrated electroencephalography and color density spectral array displays. Although these quantitative electroencephalographic trends show promise as a tool for bedside seizure screening by critical care providers, these findings require confirmation in a real-world ICU environment and in daily clinical use.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Grants and funding

LinkOut - more resources