Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;120(Pt B):2242-2246.
doi: 10.1016/j.ijbiomac.2018.08.054. Epub 2018 Sep 4.

Adaptively differential expression analysis in gill of Chinese mitten crabs (Eriocheir japonica sinensis) associated with salinity changes

Affiliations

Adaptively differential expression analysis in gill of Chinese mitten crabs (Eriocheir japonica sinensis) associated with salinity changes

Daizhen Zhang et al. Int J Biol Macromol. 2018 Dec.

Abstract

Desalination of marine species has become an important development direction for aquaculture in China and other countries. However, that how to regulate the salt balance to adapt to new freshwater habitats is a serious challenge for marine species in desalination of aquaculture. In the study, Chinese mitten crabs (Eriocheir japonica sinensis) was selected to analyse the adaptively differential expression in salinity changes for their novel characteristics of life history. The results showed that gill was the most relevant tissue in osmoregulation that was validated by biomarkers (Na+/K+-ATP, V-type H+-ATPase) with qPCR. Na+/K+-ATPase is a primary transporter and maintains the body fluid osmolality by actively pumping Na+ to the hemolymph, and V-type H+-ATPase is responsible for acid-base balance and nitrogen excretion. So both transcriptome data and qPCR results showed the significantly differential expression of Na+/K+-ATPase and V-type H+-ATPase in gills. Moreover, NAK-α had the most significantly differential expression level in salinity change, and other genes such as GST, HSP90, S27, UBE, VATB also revealed significantly up-regulation. They are considered the key enzymes during the transition from a marine environment to land. Present results have provided a foundation to further understand the molecular adaptive mechanism in desalination of marine species.

Keywords: Eriocheir japonica sinensis; Gill; Osmoregulation; Salinity change; qPCR.

PubMed Disclaimer

LinkOut - more resources