Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Jun 1;236(2):579-84.
doi: 10.1042/bj2360579.

Substrate specificity and regulation of the maize (Zea mays) leaf ADP: protein phosphotransferase catalysing phosphorylation/inactivation of pyruvate, orthophosphate dikinase

Substrate specificity and regulation of the maize (Zea mays) leaf ADP: protein phosphotransferase catalysing phosphorylation/inactivation of pyruvate, orthophosphate dikinase

R J Budde et al. Biochem J. .

Abstract

The protein substrate specificity of the maize (Zea mays) leaf ADP: protein phosphotransferase (regulatory protein, RP) was studied in terms of its relative ability to inactivate/phosphorylate pyruvate, orthophosphate dikinase from Zea mays and the non-sulphur purple photosynthetic bacterium Rhodospirillum rubrum. The dimeric bacterial dikinase was inactivated by the maize leaf RP via phosphorylation, with a stoichiometry of approximately 1 mol of phosphate incorporated/mol of 92.7-kDa protomer. Inactivation required both ADP and ATP, with ADP being the specific donor for regulatory phosphorylation. The requirements for inactivation/phosphorylation in this heterologous system were identical with those previously established for the tetrameric maize leaf dikinase. The ADP-dependent maize leaf RP did not phosphorylate alternative protein substrates such as casein or phosvitin, and its activity was not affected by cyclic nucleotides, Ca2+ or calmodulin. The regulation of the maize leaf ADP: protein phosphotransferase was studied in terms of changes in adenylate energy charge and pyruvate concentration. The change in adenylate energy charge necessary to substantially inhibit phosphorylation of maize leaf dikinase was not suggestive of it being a physiological modulator of phosphotransferase activity. Pyruvate was a potent competitive inhibitor of regulatory phosphorylation (Ki = 80 microM), consistent with its interaction with the catalytic phosphorylated intermediate of dikinase, the true protein substrate for ADP-dependent phosphorylation/inactivation.

PubMed Disclaimer

References

    1. Science. 1983 Jul 22;221(4608):331-8 - PubMed
    1. Biochem Biophys Res Commun. 1983 Feb 28;111(1):288-93 - PubMed
    1. J Bacteriol. 1986 Feb;165(2):483-8 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Eur J Biochem. 1975 Sep 1;57(1):197-204 - PubMed

Publication types

MeSH terms