Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;32(1):13-23.
doi: 10.1089/jamp.2018.1476. Epub 2018 Sep 10.

Intranasal Filtration of Inhaled Aerosol in Human Subjects as a Function of Nasal Pressure Drop

Affiliations

Intranasal Filtration of Inhaled Aerosol in Human Subjects as a Function of Nasal Pressure Drop

Laleh Golshahi et al. J Aerosol Med Pulm Drug Deliv. 2019 Feb.

Abstract

Background: Intersubject variability in nasal deposition of inhaled aerosol is significant because of the differences in nasal anatomy and breathing rate. The notable limitation of the majority of previously developed predictive correlations is including a limited number of subjects. A few recent studies have considered a wide age range of subjects, but the resulting correlations require the knowledge of the dimensions of the nasal airways and the properties of inhaled gas. In this study empirical correlations are proposed to predict aerosol deposition in nasal airways of subjects of different age as a function of intranasal pressure drop and the particle aerodynamic diameter.

Methods: The experimental nasal deposition and pressure drop data in anatomically correct nasal replicas of 5 adults, 13 children aged 4-14 years, and 11 infants aged 3-18 months were reanalyzed. The range of aerodynamic diameter was 0.5-5.3 μm and physiological breathing at different activity levels was considered. Correlations between nasal deposition and a deposition parameter including the aerodynamic size of inhaled aerosol and nasal pressure drop were developed with nonlinear least-square algorithms. The general coefficient of determination r2 was used to evaluate the fitting accuracy for each correlation.

Results: New correlations were developed to predict the intranasal deposition of particles as a function of intranasal pressure drop and particle size for pediatric and adult subjects. The intranasal deposition fraction in adults and children can be calculated using the same correlation, whereas the intranasal deposition in infants followed a different trend line because of higher intranasal pressure drop in infants.

Conclusion: This study was the first offering correlations to predict intranasal deposition in multiple age groups using only the aerodynamic size of inhaled aerosol and nasal pressure drop. These correlations include the effects of intersubject variability in nasal deposition within each age group and among different age groups.

Keywords: intranasal pressure drop; nasal filtration; nasal resistance; pediatric; respiratory deposition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources