Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec;120(Pt B):2530-2544.
doi: 10.1016/j.ijbiomac.2018.09.025. Epub 2018 Sep 7.

Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review

Affiliations
Review

Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review

Muhammad Bilal et al. Int J Biol Macromol. 2018 Dec.

Abstract

Enzymes are highly efficient biocatalysts and widely employed in biotechnological sectors. However, lack of (re)-purification and efficient recovery of enzymes are among the most critical and challenging aspects, which render them enormously expensive for industrial exploitability. Aiming to tackle these challenges, magnetic nanoparticles (MNPs) have gained a special place as versatile carriers and supporting matrices for immobilization purposes, owing to the exceptional properties of MNPs, such as large surface area, large surface-to-volume ratio, and mobility and high mass transference. More importantly, they can also be easily separated and recovered by applying an external magnetic field. Apart from their biocompatible micro-environment, the utilization of such MNPs represents a noteworthy green chemistry approach, since it lengthens the biocatalyst lifetime through multiple recovery cycles. According to the literature evidence, various modification and/or functionalization approaches have been developed to produce MNPs for the effective immobilization of a broad variety of industrially important enzymes and biomolecules with improved characteristics. Enzymes immobilized on MNPs displayed a wide-working pH and temperature range, as well as, improved thermal and storage stabilities than that of their pristine counterparts. Co-immobilization of multi-enzymes could also be accomplished through nanoparticle-based approaches. This review presents an updated outlook on the development and characterization of MNPs, in particular, iron-based MNPs-derived nano-constructs as support materials for enzyme immobilization.

Keywords: Enzyme immobilization; Green chemistry; Magnetic nanoparticles; Supporting materials; Surface functionalization.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources