Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa
- PMID: 30201715
- PMCID: PMC6166797
- DOI: 10.1073/pnas.1804525115
Superoxide dismutase activity confers (p)ppGpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa
Abstract
Metabolically quiescent bacteria represent a large proportion of those in natural and host environments, and they are often refractory to antibiotic treatment. Such drug tolerance is also observed in the laboratory during stationary phase, when bacteria face stress and starvation-induced growth arrest. Tolerance requires (p)ppGpp signaling, which mediates the stress and starvation stringent response (SR), but the downstream effectors that confer tolerance are unclear. We previously demonstrated that the SR is linked to increased antioxidant defenses in Pseudomonas aeruginosa We now demonstrate that superoxide dismutase (SOD) activity is a key factor in SR-mediated multidrug tolerance in stationary-phase P. aeruginosa Inactivation of the SR leads to loss of SOD activity and decreased multidrug tolerance during stationary phase. Genetic or chemical complementation of SOD activity of the ΔrelA spoT mutant (ΔSR) is sufficient to restore antibiotic tolerance to WT levels. Remarkably, we observe high membrane permeability and increased drug internalization upon ablation of SOD activity. Combined, our results highlight an unprecedented mode of SR-mediated multidrug tolerance in stationary-phase P. aeruginosa and suggest that inhibition of SOD activity may potentiate current antibiotics.
Keywords: (p)ppGpp stringent response; Pseudomonas aeruginosa; antibiotic tolerance; stationary phase; superoxide dismutase.
Copyright © 2018 the Author(s). Published by PNAS.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
Sublethal Paraquat Confers Multidrug Tolerance in Pseudomonas aeruginosa by Inducing Superoxide Dismutase Activity and Lowering Envelope Permeability.Front Microbiol. 2020 Sep 25;11:576708. doi: 10.3389/fmicb.2020.576708. eCollection 2020. Front Microbiol. 2020. PMID: 33101252 Free PMC article.
-
The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance.J Bacteriol. 2013 May;195(9):2011-20. doi: 10.1128/JB.02061-12. Epub 2013 Mar 1. J Bacteriol. 2013. PMID: 23457248 Free PMC article.
-
Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria.Science. 2011 Nov 18;334(6058):982-6. doi: 10.1126/science.1211037. Science. 2011. PMID: 22096200 Free PMC article.
-
Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics.World J Microbiol Biotechnol. 2023 Oct 19;39(12):347. doi: 10.1007/s11274-023-03801-2. World J Microbiol Biotechnol. 2023. PMID: 37856014
-
Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa.Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017 Mar;161(1):58-67. doi: 10.5507/bp.2016.057. Epub 2016 Nov 23. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017. PMID: 27886280
Cited by
-
Pseudomonas aeruginosa transcriptome adaptations from colonization to biofilm infection of skin wounds.Sci Rep. 2021 Oct 19;11(1):20632. doi: 10.1038/s41598-021-00073-4. Sci Rep. 2021. PMID: 34667187 Free PMC article.
-
Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus.Nat Microbiol. 2021 Jan;6(1):59-72. doi: 10.1038/s41564-020-00809-4. Epub 2020 Nov 9. Nat Microbiol. 2021. PMID: 33168988
-
Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion.BMC Microbiol. 2024 Jan 19;24(1):25. doi: 10.1186/s12866-023-03175-3. BMC Microbiol. 2024. PMID: 38238663 Free PMC article.
-
Pseudomonas aeruginosa PA14 Enhances the Efficacy of Norfloxacin against Staphylococcus aureus Newman Biofilms.J Bacteriol. 2020 Aug 25;202(18):e00159-20. doi: 10.1128/JB.00159-20. Print 2020 Aug 25. J Bacteriol. 2020. PMID: 32661077 Free PMC article.
-
Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response.BMC Microbiol. 2024 Aug 3;24(1):290. doi: 10.1186/s12866-024-03441-y. BMC Microbiol. 2024. PMID: 39095741 Free PMC article.
References
-
- Levin BR, Rozen DE. Non-inherited antibiotic resistance. Nat Rev Microbiol. 2006;4:556–562. - PubMed
-
- Meylan S, Andrews IW, Collins JJ. Targeting antibiotic tolerance, pathogen bypathogen. Cell. 2018;172:1228–1238. - PubMed
-
- Levin-Reisman I, et al. Antibiotic tolerance facilitates the evolution of resistance. Science. 2017;355:826–830. - PubMed
-
- Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–330. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials