Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov;59(4):431-439.
doi: 10.1007/s13353-018-0463-4. Epub 2018 Sep 10.

Myofibrillar myopathy in the genomic context

Affiliations
Review

Myofibrillar myopathy in the genomic context

Jakub Piotr Fichna et al. J Appl Genet. 2018 Nov.

Abstract

Myofibrillar myopathy (MFM) is a group of inherited muscular disorders characterized by myofibril dissolution and abnormal accumulation of degradation products. The diagnosis of muscular disorders based on clinical presentation is difficult due to phenotypic heterogeneity and overlapping symptoms. In addition, precise diagnosis does not always explain the disease etiopathology or the highly variable clinical course even among patients diagnosed with the same type of myopathy. The advent of high-throughput next-generation sequencing (NGS) has provided a successful and cost-effective strategy for identification of novel causative genes in myopathies, including MFM. So far, pathogenic mutations associated with MFM phenotype, including atypical MFM-like cases, have been identified in 17 genes: DES, CRYAB, MYOT, ZASP, FLNC, BAG3, FHL1, TTN, DNAJB6, PLEC, LMNA, ACTA1, HSPB8, KY, PYROXD1, and SQSTM + TIA1 (digenic). Most of these genes are also associated with other forms of muscle diseases. In addition, in many MFM patients, numerous genomic variants in muscle-related genes have been identified. The various myopathies and muscular dystrophies seem to form a single disease continuum; therefore, gene identification in one disease impacts the genetic etiology of the others. In this review, we describe the heterogeneity of the MFM genetic background focusing on the role of rare variants, the importance of whole genome sequencing in the identification of novel disease-associated mutations, and the emerging concept of variant load as the basis of the phenotypic heterogeneity.

Keywords: Epistatic effect; Exome; Limb-girdle muscular dystrophy; Mutation burden; Myofibrillar myopathies; Oligogenic.

PubMed Disclaimer

References

    1. Arimura T, Ishikawa T, Nunoda S et al (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat 32:1481–1491. https://doi.org/10.1002/humu.21603 - DOI - PubMed
    1. Badano JL, Katsanis N (2002) Beyond Mendel: an evolving view of human genetic disease transmission. Nat Rev Genet 3:779–789. https://doi.org/10.1038/nrg910 - DOI - PubMed
    1. Baker J, Riley G, Romero MR et al (2010) Identification of a Z-band associated protein complex involving KY, FLNC and IGFN1. Exp Cell Res 316:1856–1870. https://doi.org/10.1016/j.yexcr.2010.02.027 - DOI - PubMed
    1. Beatham J, Romero R, Townsend SKM et al (2004) Filamin C interacts with the muscular dystrophy KY protein and is abnormally distributed in mouse KY deficient muscle fibres. Hum Mol Genet 13:2863–2874. https://doi.org/10.1093/hmg/ddh308 - DOI - PubMed
    1. Blanco G, Coulton GR, Biggin A et al (2001) The kyphoscoliosis (ky) mouse is deficient in hypertrophic responses and is caused by a mutation in a novel muscle-specific protein. Hum Mol Genet 10:9–16 - DOI - PubMed

Substances

Supplementary concepts

LinkOut - more resources