Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 18;67(6):875-879.
doi: 10.33549/physiolres.933750. Epub 2018 Sep 11.

Relationship between dynamic expiratory time constant tau(edyn) and parameters of breathing cycle in pressure support ventilation mode

Affiliations
Free article

Relationship between dynamic expiratory time constant tau(edyn) and parameters of breathing cycle in pressure support ventilation mode

P Čandik et al. Physiol Res. .
Free article

Abstract

Study of the relationship between ventilation parameters: monitored expiratory time constant - tau(edyn) and breathing - trigger frequency (f(trig)) and time of breathing cycle (T(cy)) are main goals of this article. Parameters were analyzed during last 4+/-2 h before weaning from ventilation in 66 patients ventilated in pressure support mode (PSV). We have found out, that there exist mathematical relationships, observed during adequate gas exchange, yet not described. Monitored parameters are represented by tau(edyn), f(trig) and T(cy). The analysis showed close negative correlation between T(cy) and f(trig) (R(2)=0.903). This implies that each increasing of tau(edyn) causes decreasing of f(trig) and vice versa. The calculation of regression equation between tau(edyn) and T(cy) outlined that T(cy) = 5.2625 * tau(edyn) + 0.1242 (R(2)=0.85). Regulation of respiratory cycles by the respiratory center in the brain is probably based on evaluation of tau(edyn) as the tau(edyn) probably represents a regulatory element and T(cy) regulated element. It can be assumed, that respiratory center can optimize the work of breathing in order to minimize energy in system patient + ventilator. The unique relationship, described above could be useful in clinical practice for development of new ventilation modes.

PubMed Disclaimer