Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;18(9):1123-1136.
doi: 10.1089/ast.2017.1798.

The Vegetation Red Edge Biosignature Through Time on Earth and Exoplanets

Affiliations

The Vegetation Red Edge Biosignature Through Time on Earth and Exoplanets

Jack T O'Malley-James et al. Astrobiology. 2018 Sep.

Abstract

The high reflection of land vegetation in the near-infrared, the vegetation red edge (VRE), is often cited as a spectral biosignature for surface vegetation on exoplanets. The VRE involves only a few percentage change in reflectivity for a disk-integrated observation of present-day Earth. Here we show that the strength of Earth's VRE has increased over the past ∼500 million years of land plant evolution and may continue to increase as solar luminosity increases and the planet warms, until either vegetation coverage is reduced, or the planet's atmosphere becomes opaque to light reflected off the surface. Early plants such as mosses and liverworts, which dominated the land 500-400 million years ago, produce a weaker VRE, approximately half as strong as that of modern vegetation. We explore how the changes in land plants, as well as geological changes such as ice coverage during ice ages and interglacial periods, influence the detectability of the VRE through Earth's geological past. Our results show that the VRE has varied through the evolutionary history of land plants on Earth and could continue to change into the future if hotter climate conditions became dominant, encouraging the spread of vegetation. Our findings suggest that older and hotter Earth-like planets are good targets for the search for a VRE signature. In addition, hot exoplanets and dry exoplanets with some water could be the best targets for a successful vegetation biosignature detection. As well as a strong red edge, lower cloud fractions and low levels of atmospheric water vapor on such planets could make it easier to detect surface features in general.

Keywords: Earth through time; Paleobiology; Photosynthesis; Reflectance spectroscopy; Surface biosignatures; Vegetation red edge.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources