Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Feb;75(2):318-323.
doi: 10.1002/ps.5206. Epub 2018 Oct 17.

Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders

Affiliations
Review

Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders

Xianchun Wang et al. Pest Manag Sci. 2019 Feb.

Abstract

Latrodectus species are among the most venomous of spiders, with abundant toxic proteinaceous components in their venomous glands and other tissues, as well as their eggs. To date, several proteinaceous toxins with insecticidal potential, including α-insectotoxin and δ-insectotoxin, two of the most potent known insecticidal toxins, have been purified and characterized by comprehensively utilizing conventional biochemical techniques. This has greatly enhanced our knowledge of the molecular basis and mechanism of action of their toxicity. Application of proteomic and transcriptomic techniques further revealed the synergistic action of multiple Latrodectus proteinaceous toxins and toxin-like components. Insecticidal toxins from Latrodectus spiders have great potential in insect pest control; however, more studies are needed to further reveal their mechanisms of action and understand their structures and properties before any practical application, for example, the insecticidal toxin-containing fusion proteins with oral activity. Here, we review current knowledge of the molecular basis and mechanism of action underlying the insecticidal activity of venoms and toxins from Latrodectus spiders, and examine their potential application in insect pest control. © 2018 Society of Chemical Industry.

Keywords: Latrodectus spider; action mechanism; insect pest control; insecticidal activity; molecular basis.

PubMed Disclaimer

LinkOut - more resources