Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;43(8):1611-1619.
doi: 10.1038/s41366-018-0203-1. Epub 2018 Sep 11.

Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function

Affiliations

Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function

Ferran Comas et al. Int J Obes (Lond). 2019 Aug.

Abstract

Background/objectives: Recent studies indicate a possible role of TSH/TSHR signalling axis on adipogenesis and adipose tissue physiology. Here, we aimed to investigate the relationship between adipose tissue TSHB and adipose tissue physiology-related gene expression.

Subjects/methods: Subcutaneous and visceral adipose tissue TSHB gene expression was analysed in two independent cohorts [Cohort1 (N = 96) and Cohort2 (N = 45)] and after bariatric surgery-induced weight loss [Cohort3 (N = 22)]. Adipose tissue TSH protein expression was also analysed in a subgroup of participants from Cohort 1 (N = 16). The effects of recombinant TSH on human subcutaneous preadipocytes and adipocytes were investigated.

Results: In cohort 1, both visceral and subcutaneous adipose tissue TSHB gene expression was positively correlated with the expression of mitochondrial function (PPARGC1A, ISCA2, CISD1, SIRT1, NFE2L2, NRF1) and fatty acid mobilization (CAV1, ENGL1), but not with adipogenic-related genes. Of note, adipose tissue TSH protein levels were also associated with some of these markers of mitochondrial function and fatty acid mobilization. These associations were replicated in cohort 2. Bariatric surgery-induced weight loss resulted in increased subcutaneous adipose tissue TSHB in parallel to increased PPARGC1A. In human subcutaneous adipocytes, rh-TSH administration led to increased mitochondrial respiratory capacity in parallel to increased mitochondrial function- and adipogenic-related gene expression, but no significant effects were observed during differentiation of human preadipocytes.

Conclusion: These data point to a possible role of adipose tissue TSH in the maintenance of adipocyte mitochondrial function.

PubMed Disclaimer

References

    1. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075–88. - DOI
    1. Klöting N, Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15:277–87. - DOI
    1. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015;64:3135–45. - DOI
    1. Haraguchi K, Shimura H, Lin L, Endo T, Onaya T. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology. 1996;137:3200–5. - DOI
    1. Bell A, Gagnon A, Grunder L, Parikh SJ, Smith TJ, Sorisky A. Functional TSH receptor in human abdominal preadipocytes and orbital fibroblasts. Am J Physiol Cell Physiol. 2000;279:C335–40. - DOI

Publication types

MeSH terms

LinkOut - more resources