Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 11;24(11):2857-2868.e4.
doi: 10.1016/j.celrep.2018.08.039.

Interrogating the ccm-3 Gene Network

Affiliations
Free article

Interrogating the ccm-3 Gene Network

Benjamin Lant et al. Cell Rep. .
Free article

Abstract

Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by mutations in one of three genes (CCM1-3). Loss of CCM3 causes the poorest prognosis, and little is known about how it regulates vascular integrity. The C. elegans ccm-3 gene regulates the development of biological tubes that resemble mammalian vasculature, and in a genome-wide reverse genetic screen, we identified more than 500 possible CCM-3 pathway genes. With a phenolog-like approach, we generated a human CCM signaling network and identified 29 genes in common, of which 14 are required for excretory canal extension and membrane integrity, similar to ccm-3. Notably, depletion of the MO25 ortholog mop-25.2 causes severe defects in tube integrity by preventing CCM-3 localization to apical membranes. Furthermore, loss of MO25 phenocopies CCM3 ablation by causing stress fiber formation in endothelial cells. This work deepens our understanding of how CCM3 regulates vascular integrity and may help identify therapeutic targets for treating CCM3 patients.

Keywords: C. elegans; CCM3; bioinformatics; biological tubes; cerebral cavernous malformation; endothelial cells; phenologs; whole-genome screen.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources