Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells
- PMID: 30210768
- PMCID: PMC6124911
- DOI: 10.1039/c8sc02680g
Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells
Abstract
Multidimensional peptide separations can greatly increase the depth of coverage in proteome profiling. However, a major challenge for multidimensional separations is the requirement of large biological samples, often containing milligram amounts of protein. We have developed nanowell-mediated two-dimensional (2D) reversed-phase nanoflow liquid chromatography (LC) separations for in-depth proteome profiling of low-nanogram samples. Peptides are first separated using high-pH LC and the effluent is concatenated into 4 or 12 nanowells. The contents of each nanowell are reconstituted in LC buffer and collected for subsequent separation and analysis by low-pH nanoLC-MS/MS. The nanowell platform minimizes peptide losses to surfaces in offline 2D LC fractionation, enabling >5800 proteins to be confidently identified from just 50 ng of HeLa digest. Furthermore, in combination with a recently developed nanowell-based sample preparation workflow, we demonstrated deep proteome profiling of >6000 protein groups from small populations of cells, including ∼650 HeLa cells and 10 single human pancreatic islet thin sections (∼1000 cells) from a pre-symptomatic type 1 diabetic donor.
Figures





Similar articles
-
Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses.Anal Bioanal Chem. 2019 Aug;411(21):5363-5372. doi: 10.1007/s00216-018-1452-5. Epub 2018 Nov 5. Anal Bioanal Chem. 2019. PMID: 30397757 Free PMC article.
-
Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples.Anal Chem. 2019 Aug 6;91(15):9707-9715. doi: 10.1021/acs.analchem.9b01248. Epub 2019 Jul 9. Anal Chem. 2019. PMID: 31241912 Free PMC article.
-
Online 2D High-pH and Low-pH Reversed-Phase Nano-LC-MS/MS System for Deep Proteome Analysis.Anal Chem. 2023 Apr 11;95(14):5850-5857. doi: 10.1021/acs.analchem.2c02455. Epub 2023 Mar 30. Anal Chem. 2023. PMID: 36995735
-
[Recent progress in capillary electrophoresis-based high-sensitivity proteomics].Se Pu. 2020 Oct 8;38(10):1125-1132. doi: 10.3724/SP.J.1123.2020.03003. Se Pu. 2020. PMID: 34213109 Review. Chinese.
-
[Advances in high-throughput proteomic analysis].Se Pu. 2021 Feb;39(2):112-117. doi: 10.3724/SP.J.1123.2020.08023. Se Pu. 2021. PMID: 34227342 Free PMC article. Review. Chinese.
Cited by
-
Parallel sample processing for mass spectrometry-based single cell proteomics.Anal Chim Acta. 2024 Nov 15;1329:343241. doi: 10.1016/j.aca.2024.343241. Epub 2024 Sep 12. Anal Chim Acta. 2024. PMID: 39396304
-
Repurposed 3D Printer Allows Economical and Programmable Fraction Collection for Proteomics of Nanogram Scale Samples.Anal Chem. 2024 Jul 16;96(28):11439-11447. doi: 10.1021/acs.analchem.4c01731. Epub 2024 Jul 5. Anal Chem. 2024. PMID: 38968027 Free PMC article.
-
Molecular Dynamics Simulation-assisted Ionic Liquid Screening for Deep Coverage Proteome Analysis.Mol Cell Proteomics. 2020 Oct;19(10):1724-1737. doi: 10.1074/mcp.TIR119.001827. Epub 2020 Jul 16. Mol Cell Proteomics. 2020. PMID: 32675193 Free PMC article.
-
Seamlessly Integrated Miniaturized Filter-Aided Sample Preparation Method to Fractionation Techniques for Fast, Loss-Less, and In-Depth Proteomics Analysis of 1 μg of Cell Lysates at Low Cost.Anal Chem. 2022 Jul 19;94(28):10135-10141. doi: 10.1021/acs.analchem.2c01396. Epub 2022 Jul 7. Anal Chem. 2022. PMID: 35796025 Free PMC article.
-
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics.Int J Mol Sci. 2020 Feb 23;21(4):1524. doi: 10.3390/ijms21041524. Int J Mol Sci. 2020. PMID: 32102244 Free PMC article. Review.
References
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases