Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 12;504(4):686-689.
doi: 10.1016/j.bbrc.2018.09.029. Epub 2018 Sep 11.

Graphene-based materials: The missing piece in nanomedicine?

Affiliations
Free article

Graphene-based materials: The missing piece in nanomedicine?

Tanveer A Tabish. Biochem Biophys Res Commun. .
Free article

Abstract

Nanomedicine utilizes biocompatible nanomaterials for therapeutic as well as imaging purposes for the treatment of various diseases including cancer, neurological disorders and wound infections. Graphene and its modified nanostructures have attracted much attention in recent years in nanomedicine owing to their scalable and cost effective preparation and physiochemical features (high specific surface area, ease in conjugation to peptides/antibodies/proteins and biocompatibility). However, the limited fabrication, functionalization, and in vivo functionalities available in literature indicate inconsistencies regarding the factors affecting in vivo metabolisms, biodistribution as well as toxicity patterns of graphene. It appears that redox signaling pathways, and their proper use to target specific diseases and to improve biocompatibility and interplay between size and optical properties are key determinants to investigate the metabolic fate of such materials. This featured letter provides key insights into the significance and multifunctional roles of redox regulated species in graphene-based materials which can be used to closely mimic therapeutic functions, navigating new paths to nanomedicine and synthetic biology. Furthermore, this letter focuses on the missing functionalities and challenges in using graphene-based materials as both nano-carriers and nano-drugs in various biomedical sectors which might be favorable for multiple payloads and drug targeting in upcoming years.

Keywords: Cancer diagnosis and treatment; Graphene; Nanomedicine; Reactive oxygen and nitrogen species; Toxicity; Wound healing.

PubMed Disclaimer

Publication types

LinkOut - more resources