Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2018 Sep 13;9(1):3707.
doi: 10.1038/s41467-018-04989-w.

Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

Molly Went  1 Amit Sud  1 Asta Försti  2   3 Britt-Marie Halvarsson  4 Niels Weinhold  5   6 Scott Kimber  7 Mark van Duin  8 Gudmar Thorleifsson  9 Amy Holroyd  1 David C Johnson  7 Ni Li  1 Giulia Orlando  1 Philip J Law  1 Mina Ali  4 Bowang Chen  2 Jonathan S Mitchell  1 Daniel F Gudbjartsson  9   10 Rowan Kuiper  8 Owen W Stephens  5 Uta Bertsch  2   11 Peter Broderick  1 Chiara Campo  2 Obul R Bandapalli  2 Hermann Einsele  12 Walter A Gregory  13 Urban Gullberg  4 Jens Hillengass  6 Per Hoffmann  14   15 Graham H Jackson  16 Karl-Heinz Jöckel  17 Ellinor Johnsson  4 Sigurður Y Kristinsson  18 Ulf-Henrik Mellqvist  19 Hareth Nahi  20 Douglas Easton  21   22 Paul Pharoah  21   22 Alison Dunning  21 Julian Peto  23 Federico Canzian  24 Anthony Swerdlow  1   25 Rosalind A Eeles  1   26 ZSofia Kote-Jarai  1 Kenneth Muir  27   28 Nora Pashayan  21   29 Jolanta Nickel  6 Markus M Nöthen  14   30 Thorunn Rafnar  9 Fiona M Ross  31 Miguel Inacio da Silva Filho  2 Hauke Thomsen  2 Ingemar Turesson  32 Annette Vangsted  33 Niels Frost Andersen  34 Anders Waage  35 Brian A Walker  5 Anna-Karin Wihlborg  4 Annemiek Broyl  8 Faith E Davies  5 Unnur Thorsteinsdottir  9   36 Christian Langer  37 Markus Hansson  4   32 Hartmut Goldschmidt  6   11 Martin Kaiser  7 Pieter Sonneveld  8 Kari Stefansson  9 Gareth J Morgan  5 Kari Hemminki  38   39 Björn Nilsson  40   41 Richard S Houlston  42   43 PRACTICAL consortium
Collaborators, Affiliations
Meta-Analysis

Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

Molly Went et al. Nat Commun. .

Erratum in

  • Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma.
    Went M, Sud A, Försti A, Halvarsson BM, Weinhold N, Kimber S, van Duin M, Thorleifsson G, Holroyd A, Johnson DC, Li N, Orlando G, Law PJ, Ali M, Chen B, Mitchell JS, Gudbjartsson DF, Kuiper R, Stephens OW, Bertsch U, Broderick P, Campo C, Bandapalli OR, Einsele H, Gregory WA, Gullberg U, Hillengass J, Hoffmann P, Jackson GH, Jöckel KH, Johnsson E, Kristinsson SY, Mellqvist UH, Nahi H, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai Z, Muir K, Pashayan N; PRACTICAL consortium; Nickel J, Nöthen MM, Rafnar T, Ross FM, da Silva Filho MI, Thomsen H, Turesson I, Vangsted A, Andersen NF, Waage A, Walker BA, Wihlborg AK, Broyl A, Davies FE, Thorsteinsdottir U, Langer C, Hansson M, Goldschmidt H, Kaiser M, Sonneveld P, Stefansson K, Morgan GJ, Hemminki K, Nilsson B, Houlston RS. Went M, et al. Nat Commun. 2019 Jan 10;10(1):213. doi: 10.1038/s41467-018-08107-8. Nat Commun. 2019. PMID: 30631080 Free PMC article.

Abstract

Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.

PubMed Disclaimer

Conflict of interest statement

G.T., D.F.G., T.R., K.S. and U.T. are employed by deCode Genetics/Amgen Inc. The remaining authors declare no competing interests.

Figures

Fig. 1
Fig. 1
GWAS study design. Details of the new and existing GWAS samples, including recruitment centres or trials and quality control, are provided in Supplementary Tables 1 and 2. Trials or centres from which replication samples were recruited are detailed in Supplementary Table 3. Ca.: cases, Co.: controls, eQTL: expression quantitative trait loci, SNP: single-nucleotide polymorphism, LD: linkage disequilibrium
Fig. 2
Fig. 2
Regional plots of the six new risk loci. Regional plots of loci a 2q31.1, b 5q23.2, c 7q22.3, d 7q31.33, e 16p11.2 and f 19p13.11. Plots show results of the meta-analysis for both genotyped (triangles) and imputed (circles) single-nucleotide polymorphisms (SNPs) and recombination rates. −log10(P) (y axes) of the SNPs are shown according to their chromosomal positions (x axes). The sentinel SNP in each combined analysis is shown as a large circle or triangle and is labelled by its rsID. The colour intensity of each symbol reflects the extent of LD with the top SNP, white (r2 = 0) through to dark red (r2 = 1.0). Genetic recombination rates, estimated using 1000 Genomes Project samples, are shown with a light blue line. Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of genes and transcripts mapping to the region of association. Genes have been redrawn to show their relative positions; therefore maps are not to physical scale. The middle track represents the chromatin-state segmentation track (ChromHMM) for KMS11

References

    1. Altieri A, Chen B, Bermejo JL, Castro F, Hemminki K. Familial risks and temporal incidence trends of multiple myeloma. Eur. J. Cancer. 2006;42:1661–1670. doi: 10.1016/j.ejca.2005.11.033. - DOI - PubMed
    1. Broderick P, et al. Common variation at 3p22.1 and 7p15.3 influences multiple myeloma risk. Nat. Genet. 2011;44:58–61. doi: 10.1038/ng.993. - DOI - PMC - PubMed
    1. Chubb D, et al. Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk. Nat. Genet. 2013;45:1221–1225. doi: 10.1038/ng.2733. - DOI - PMC - PubMed
    1. Mitchell JS, et al. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma. Nat. Commun. 2016;7:12050. doi: 10.1038/ncomms12050. - DOI - PMC - PubMed
    1. Swaminathan B, et al. Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma. Nat. Commun. 2015;6:7213. doi: 10.1038/ncomms8213. - DOI - PMC - PubMed

Publication types