Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 30:12:263.
doi: 10.3389/fncel.2018.00263. eCollection 2018.

Ketogenic Diet Modulates NAD+-Dependent Enzymes and Reduces DNA Damage in Hippocampus

Affiliations

Ketogenic Diet Modulates NAD+-Dependent Enzymes and Reduces DNA Damage in Hippocampus

Marwa Elamin et al. Front Cell Neurosci. .

Abstract

The ketogenic diet's (KD) anti-seizure effects have long been documented. Recently, its therapeutic potential in multiple neurodegenerative and neurodevelopmental disorders has emerged. Yet experimental evidence for a fundamental mechanism underlying beneficial effects across numerous diseases remains lacking. We previously showed that feeding rats a KD produced an early (within 2 days) and persistent elevation of hippocampal nicotinamide adenine dinucleotide+ (NAD+), an essential metabolic coenzyme and signaling molecule. NAD+ is a marker of cellular health and a substrate for enzymes implicated in longevity and DNA damage repair such as sirtuins and poly-ADP ribose polymerase-1 (PARP-1). As a result, activation of NAD+-dependent enzymes' downstream pathways could be the origin of KD's broad beneficial effects. Here rats were fed ad libitum regular chow or KD for 2 days or 3 weeks and the levels of hippocampal sirtuins, PARP-1, and the oxidative DNA damage marker 8-hydroxy-2'-deoxyguanosine were quantified. We found a significant immediate and persistent increase in the collective activity of nuclear sirtuin enzymes, and a significant augmentation of Sirt1 mRNA at 2 days. Levels of PARP-1 and 8-hydroxy-2'-deoxyguanosine decreased after 2 days of treatment and further declined at 3 weeks. Our data show that a KD can rapidly modulate energy metabolism by acting on NAD+-dependent enzymes and their downstream pathways. Thus, therapy with a KD can potentially enhance brain health and increase overall healthspan via NAD+-related mechanisms that render cells more resilient against DNA damage and a host of metabolic, epileptic, neurodegenerative, or neurodevelopmental insults.

Keywords: PARP-1; hippocampus; ketone bodies; longevity; metabolism; nicotinamide adenine dinucleotide; oxidative stress; sirtuin.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Hippocampal changes in NAD and sirtuins after ketogenic diet (KD) treatment. (A,B) NAD+/NADH ratios and NAD+ levels in the hippocampus after standard chow diet (CD; n = 5), 2 day (2d; n = 7), or 3 weeks KD treatment (3w; n = 7). (C) Collective deacetylation activity of Sirt1, Sirt6, and Sirt7 enzymes. A significant increase was observed at 2d and remained elevated at 3w. n = 6–8 animals (n = 2 per animal). (D–F) Real-time PCR analysis of Sirt1,–6,–7 gene expression in hippocampus. Sirt1 expression was increased only at 2d of treatment. CD, n = 6; 2d KD, n = 8; 3w KD, n = 8 (n = 2 per animal).
FIGURE 2
FIGURE 2
Effect of KD treatment on hippocampal PARP-1 levels and 8-OHdG levels. (A) Quantification of normalized PARP-1 protein levels in hippocampi obtained from animals fed standard chow (CD), or KD for 2d or 3w. Representative image of PARP-1 Western blot included. Each lane represents an individual animal. Blots were repeated 2–3 times. (B) Significant and progressive decrease in 8-OHdG levels was observed in hippocampi obtained from KD treated animals. CD, n = 6; 2d KD, n = 8; 3w KD, n = 8 (n = 2 for each animal).

References

    1. Andersen J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat. Rev. Neurosci. 10 S18–S25. 10.1038/nrn1434 - DOI - PubMed
    1. Augustin K., Khabbush A., Williams S., Eaton S., Orford M., Cross J. H., et al. (2018). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet. Neurol. 17 84–93. 10.1016/S1474-4422(17)30408-8 - DOI - PubMed
    1. Bai P., Cantó C., Oudart H., Brunyánszki A., Cen Y., Thomas C., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13 461–468. 10.1016/j.cmet.2011.03.004 - DOI - PMC - PubMed
    1. Barzilai A., Yamamoto K. I. (2004). DNA damage responses to oxidative stress. DNA Repair 3 1109–1115. 10.1016/j.dnarep.2004.03.002 - DOI - PubMed
    1. Basello D. A., Scovassi A. I. (2015). Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion 24 56–63. 10.1016/j.mito.2015.07.005 - DOI - PubMed