Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;120(1):28-36.
doi: 10.1002/jcb.27485. Epub 2018 Sep 14.

ROS-challenged keratinocytes as a new model for oxidative stress-mediated skin diseases

Affiliations

ROS-challenged keratinocytes as a new model for oxidative stress-mediated skin diseases

Victoria Barygina et al. J Cell Biochem. 2019 Jan.

Abstract

In the current study, the effects of the reactive oxygen species (ROS) generator 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) on extracellular and intracellular ROS production in human keratinocytes (HACAT) were studied. AAPH is a water-soluble compound able to generate ROS at known and constant rates at 37°C. The short treatment (2 h) with AAPH brought a significant dose-dependent increase in NADPH oxidase activity in intact keratinocytes. The long-term treatment (24 h) with AAPH led to a persistent increase in NADPH oxidase activity for up to 48 hour following the AAPH removal from cell incubation medium. ROS and nitric oxide levels, lipoperoxidation, intracellular calcium, mitochondrial superoxide production, and membrane potential were significantly modified in AAPH-treated HACAT. Superoxide dismutase (SOD) and/or catalase addition to HACAT revealed that untreated keratinocytes produce mostly superoxide anion (O 2- ), while AAPH-treated keratinocytes overproduce hydrogen peroxide (H 2 O 2 ) in extracellular medium. H 2 O 2 is particularly stable and plays important roles in several cell signaling pathways. Taken together, our findings suggest a cost-effective and easily reproducible in vitro model of stressed human keratinocytes releasing significantly elevated ROS amounts in extracellular medium with respect to control keratinocytes. The possible application of the proposed model for keratinocytes-melanocytes cross-talk studies is also suggested. The model of AAPH-stressed human keratinocytes described here can represent a useful tool for redox cross-talk studies between keratinocytes and other skin cell types, and applied for researches regarding skin pathologies associated with oxidative stress.

Keywords: AAPH; coculture, in vitro model; keratinocytes; melanocytes; oxidative stress; vitiligo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources