Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb;139(2):391-399.
doi: 10.1016/j.jid.2018.07.038. Epub 2018 Sep 12.

Insights into ZIKV-Mediated Innate Immune Responses in Human Dermal Fibroblasts and Epidermal Keratinocytes

Affiliations
Free article

Insights into ZIKV-Mediated Innate Immune Responses in Human Dermal Fibroblasts and Epidermal Keratinocytes

Ji-Ae Kim et al. J Invest Dermatol. 2019 Feb.
Free article

Abstract

Zika virus (ZIKV) has emerged as a global pathogen causing significant public health concern. ZIKV infections in humans principally occur via mosquito bites. Thus, host skin cells are permissive to ZIKV infection and are the first line of defense against the virus. Here, we examined the role and mechanisms of antiviral skin immunity against ZIKV infection. ZIKV infection (African lineage MR766) in human dermal fibroblasts, human epidermal keratinocytes, and HaCaT keratinocytes resulted in distinct expression changes in RIG-I-like receptors, such as RIG-I and MDA5. Inhibition of RIG-I using small interfering RNA resulted in increased viral gene expression and reduced induction of IFNs and IFN-stimulated genes. Furthermore, ZIKV NS1 directly interacted with RIG-I or MDA5 and down-regulated RIG-I-like receptor-mediated antiviral signaling pathways. Asian lineage ZIKV (PRVABC59) infection also showed a distinct pattern of antiviral immunity in human skin cells, compared with other ZIKV strains. Additionally, ZIKV infections in human neural progenitor cells induced the robust activation of RIG-I-like receptor-mediated signaling, followed by highly enhanced IFN-stimulated gene expression. Our findings provide important insights into ZIKV tropism and subsequent antiviral signaling pathways that regulate ZIKV replication in human dermal fibroblasts and human epidermal keratinocytes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources