Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model
- PMID: 30219980
- PMCID: PMC6208590
- DOI: 10.1007/s10867-018-9508-5
Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model
Abstract
Blood flow in micro capillaries of diameter approximately 15-500 μm is accompanied with a lower tube hematocrit level and lower apparent viscosity as the diameter decreases. These effects are termed the Fåhraeus and Fåhraeus-Lindqvist effects, respectively. Both effects are linked to axial accumulation of red blood cells. In the present investigation, we extend previous works using a shear-induced model for the migration of red blood cells and adopt a model for blood viscosity that accounts for the suspending medium viscosity and local hematocrit level. For fully developed hematocrit profiles (i.e., independent of axial location), the diffusion fluxes due to particle collision frequency and viscosity gradients are of equal magnitude and opposite directions. The ratio of the diffusion coefficients for the two fluxes affects both the Fåhraeus and Fåhraeus-Lindqvist effects and is found related to the capillary diameter and discharge hematocrit using a well-known data-fit correlation for apparent blood viscosity. The velocity and hematocrit profiles were determined numerically as functions of radial coordinate, tube diameter, and discharge hematocrit. The velocity profile determined numerically is consistent with the derived analytical expression and the results are in good agreement with published numerical results and experimental data for hematocrit ratio and hematocrit and velocity profiles.
Keywords: Apparent blood viscosity; Axial accumulation; Cell depletion; Microvessels; Red blood cells.
Conflict of interest statement
The author declares that he has no conflicts of interest.
Figures





Similar articles
-
Dynamics of blood flow: modeling of the Fåhræus-Lindqvist effect.J Biol Phys. 2015 Jun;41(3):313-26. doi: 10.1007/s10867-015-9376-1. Epub 2015 Feb 22. J Biol Phys. 2015. PMID: 25702195 Free PMC article.
-
Osmolality-mediated Fahraeus and Fahraeus-Lindqvist effects for human RBC suspensions.Am J Physiol. 1988 Feb;254(2 Pt 2):H238-49. doi: 10.1152/ajpheart.1988.254.2.H238. Am J Physiol. 1988. PMID: 3344815
-
Kinetic theory based model for blood flow and its viscosity.Ann Biomed Eng. 2009 Aug;37(8):1534-45. doi: 10.1007/s10439-009-9720-3. Epub 2009 May 29. Ann Biomed Eng. 2009. PMID: 19479375
-
Blood viscosity in tube flow: dependence on diameter and hematocrit.Am J Physiol. 1992 Dec;263(6 Pt 2):H1770-8. doi: 10.1152/ajpheart.1992.263.6.H1770. Am J Physiol. 1992. PMID: 1481902 Review.
-
Determinants of tumor blood flow: a review.Cancer Res. 1988 May 15;48(10):2641-58. Cancer Res. 1988. PMID: 3282647 Review.
Cited by
-
A continuum mechanics model for the Fåhræus-Lindqvist effect.J Biol Phys. 2021 Sep;47(3):253-270. doi: 10.1007/s10867-021-09575-8. Epub 2021 Jul 3. J Biol Phys. 2021. PMID: 34218404 Free PMC article.
-
The Product of Red Blood Cells and Hematocrit Can Be Used as a Novel Indicator of Impaired Fasting Blood Glucose Status.Diabetes Metab Syndr Obes. 2020 Oct 27;13:4007-4015. doi: 10.2147/DMSO.S270276. eCollection 2020. Diabetes Metab Syndr Obes. 2020. PMID: 33149640 Free PMC article.
-
Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System.Front Immunol. 2021 Dec 23;12:767175. doi: 10.3389/fimmu.2021.767175. eCollection 2021. Front Immunol. 2021. PMID: 35003081 Free PMC article. Review.
-
The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?J Biol Phys. 2019 Dec;45(4):379-394. doi: 10.1007/s10867-019-09534-4. Epub 2019 Dec 2. J Biol Phys. 2019. PMID: 31792778 Free PMC article.
-
Remodeling of the choroidal vasculature and the role of choriocapillaris perfusion drop in pachychoroid diseases: a global rheological approach.Graefes Arch Clin Exp Ophthalmol. 2023 Oct;261(10):3045-3046. doi: 10.1007/s00417-023-06084-3. Epub 2023 May 5. Graefes Arch Clin Exp Ophthalmol. 2023. PMID: 37145334 No abstract available.
References
-
- Fournier RL. Basic Transport Phenomena in Biomedical Engineering. Boca Raton: CRC Press; 2012.
-
- Fåhraeus R. The suspension stability of blood. Physiol. Rev. 1929;9:241–274. doi: 10.1152/physrev.1929.9.2.241. - DOI
-
- Martini P, Pierach A, Scheryer E. Die Strömung des Blutes in engen Gefäβen. Eine Abweichung vom Poiseuille’schen Gesetz. Deutsches Archiv für klinische Medizin. 1930;169:212–222.
-
- Fåhraeus R, Lindqvist T. The viscosity of the blood in narrow capillary tubes. Am. J. Phys. 1931;96:562–568.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources