Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986;323(6091):812-4.
doi: 10.1038/323812a0.

cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones

cGMP-dependent protein kinase enhances Ca2+ current and potentiates the serotonin-induced Ca2+ current increase in snail neurones

D Paupardin-Tritsch et al. Nature. 1986.

Abstract

Protein phosphorylation catalysed by cyclic AMP-dependent, Ca2+/calmodulin-dependent and Ca2+/diacylglycerol-dependent protein kinases is important both in the modulation of synaptic transmission and in the regulation of neuronal membrane permeability (for reviews see refs 5-7). However, there has previously been no evidence for the involvement of cyclic GMP-dependent protein kinase (cGMP-PK) in the regulation of neuronal function. Serotonin induces an increase of Ca2+ current in a group of identified ventral neurones of the snail Helix aspersa. This effect is probably mediated by cGMP because it is mimicked by the intracellular injection of cGMP or the application of zaprinast, an inhibitor of cGMP-dependent phosphodiesterase. We have now found that the effect of either serotonin or zaprinast on the Ca2+ current is potentiated by the intracellular injection of cGMP-PK. Moreover, the intracellular injection of activated cGMP-PK (cGMP-PK + 1 microM cGMP) greatly enhances the Ca2+ current of the identified ventral neurones seen in the absence of serotonin. These results indicate that cGMP-PK has a physiological role in the control of the membrane permeability of these neurones.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources