Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018;26(6):885-893.
doi: 10.3233/XST-18386.

Comparison of medical image classification accuracy among three machine learning methods

Affiliations

Comparison of medical image classification accuracy among three machine learning methods

Tomoko Maruyama et al. J Xray Sci Technol. 2018.

Abstract

Background: Low-quality medical images may influence the accuracy of the machine learning process.

Objective: This study was undertaken to compare accuracy of medical image classification among machine learning methods, as classification is a basic aspect of clinical image inspection.

Methods: Three types of machine learning methods were used, which include Support Vector Machine (SVM), Artificial Neural Network (ANN), and Convolution Neural Network (CNN). To investigate changes in accuracy related to image quality, we constructed a single dataset using two different file formats of DICOM (Digital Imaging and Communications in Medicine) and JPEG (Joint Photographic Experts Group).

Results: The JPEG format contains less color information and data capacity than the DICOM format. CNN classification was accurate for both datasets, whereas SVM and ANN accuracy decreased with the loss of data from DICOM to JPEG formats.

Conclusions: CNN is more accurate than conventional machine learning methods that utilize the manual feature extraction.

Keywords: CNN; DICOM; Deep learning; JPEG.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources