Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 17;6(1):162.
doi: 10.1186/s40168-018-0536-y.

Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate

Affiliations

Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate

Marius Bredon et al. Microbiome. .

Abstract

Background: Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts.

Results: To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare.

Conclusions: Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.

Keywords: CAZyme; Holobiont; Host–symbiont interactions; Isopods; Microbiome; RT-qPCR; Transcriptome.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Model for lignocellulose degradation in the A. vulgare holobiont. Diagrams represent the CAZy families contributed by the host (red) and the microbiome (blue). (I) Lignin would be partially degraded to release cellulose and hemicellulose. (II) Cellulose would be degraded by the action of endoglucanases and β-glucosidases. A high number of β-glucosidases and mechanical fragmentation by A. vulgare could compensate for the lack of exoglucanases. (III) The A. vulgare holobiont could degrade most types of hemicellulose due to the high diversity of Debranching enzymes* (CE1, CE3, CE4, CE5, CE6, CE7, CE12, GH3, GH4, GH43, GH51), Endo-hemicellulases* (GH5, GH8, GH9, GH10, GH11, GH16, GH30, GH43, GH51, GH53, GH74, GH113, GH128, GH134), and Exo-hemicellulases* (GH1, GH2, GH3, GH4, GH5, GH27, GH29, GH30, GH31, GH35, GH36, GH39, GH42, GH43, GH51, GH57, GH116, GH120)
Fig. 2
Fig. 2
Prediction of enzymatic functions (EC number) of debranching enzymes (DE), endo-hemicellulases (Endo), exo-hemicellulases (Exo), cellulases, and lignin modifying enzymes (LMEs) identified in the metagenomes of specimens from the field and the laboratory and in the host transcriptome. Relative abundance (in %) for a given predicted enzymatic function was calculated by dividing the identified counts for a given enzyme by the total counts identified in a metagenome or in the transcriptome
Fig. 3
Fig. 3
Quantitative RT-PCR analysis of the expression of representative host lignocellulose-degrading CAZymes in caeca (C), gut content (GC), hindgut (HG), and non-digestive tissues (T). Transcripts with the highest RPKM value were chosen to represent each family of interest. Expression of each gene was normalized based on the expression of Ribosomal Protein L8 (RbL8) and Elongation Factor 2 (EF2) as reference genes. Different letters indicate statistically significant differences (p < 0.05) after Kruskal–Wallis rank sum test
Fig. 4
Fig. 4
Relative abundance of prokaryotic taxa contributing lignocellulose-degrading CAZymes depending on a host origin, gender, and Wolbachia infection status, b host origin alone, and c for several genes consistently present in isopods of both field and laboratory origin. See Table 3 for a detailed annotation of these genes
Fig. 5
Fig. 5
Lignocellulose-degrading enzymes and their associated microbial community in (a) isopods from the laboratory and (b) isopods from a natural population. c The microbial taxa contributing lignocellulose-binding modules in both field and laboratory specimens

References

    1. Swift M, Heal O, Anderson J. Decomposition in terrestrial ecosystems. Oxford: Blackwell Scientific Publications; 1979.
    1. Hättenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst. 2005;36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932. - DOI
    1. David JF. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem. 2014;76:109–118. doi: 10.1016/j.soilbio.2014.05.009. - DOI
    1. López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6 10.1038/srep25279. - PMC - PubMed
    1. Ragauskas AJ. The path forward for biofuels and biomaterials. Science. 2006;311:484–489. doi: 10.1126/science.1114736. - DOI - PubMed

Publication types

LinkOut - more resources