Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2018 Oct;50(10):1412-1425.
doi: 10.1038/s41588-018-0205-x. Epub 2018 Sep 17.

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

Evangelos Evangelou  1   2 Helen R Warren  3   4 David Mosen-Ansorena  1 Borbala Mifsud  3 Raha Pazoki  1 He Gao  1   5 Georgios Ntritsos  2 Niki Dimou  2 Claudia P Cabrera  3   4 Ibrahim Karaman  1 Fu Liang Ng  3 Marina Evangelou  1   6 Katarzyna Witkowska  3 Evan Tzanis  3 Jacklyn N Hellwege  7 Ayush Giri  8 Digna R Velez Edwards  8 Yan V Sun  9   10 Kelly Cho  11   12 J Michael Gaziano  11   12 Peter W F Wilson  13 Philip S Tsao  14 Csaba P Kovesdy  15 Tonu Esko  16   17 Reedik Mägi  16 Lili Milani  16 Peter Almgren  18 Thibaud Boutin  19 Stéphanie Debette  20   21 Jun Ding  22 Franco Giulianini  23 Elizabeth G Holliday  24 Anne U Jackson  25 Ruifang Li-Gao  26 Wei-Yu Lin  27 Jian'an Luan  28 Massimo Mangino  29   30 Christopher Oldmeadow  24 Bram Peter Prins  31 Yong Qian  22 Muralidharan Sargurupremraj  21 Nabi Shah  32   33 Praveen Surendran  27 Sébastien Thériault  34   35 Niek Verweij  17   36   37 Sara M Willems  28 Jing-Hua Zhao  28 Philippe Amouyel  38 John Connell  39 Renée de Mutsert  26 Alex S F Doney  32 Martin Farrall  40   41 Cristina Menni  29 Andrew D Morris  42 Raymond Noordam  43 Guillaume Paré  34 Neil R Poulter  44 Denis C Shields  45 Alice Stanton  46 Simon Thom  47 Gonçalo Abecasis  48 Najaf Amin  49 Dan E Arking  50 Kristin L Ayers  51   52 Caterina M Barbieri  53 Chiara Batini  54 Joshua C Bis  55 Tineka Blake  54 Murielle Bochud  56 Michael Boehnke  25 Eric Boerwinkle  57 Dorret I Boomsma  58 Erwin P Bottinger  59 Peter S Braund  60   61 Marco Brumat  62 Archie Campbell  63   64 Harry Campbell  65 Aravinda Chakravarti  50 John C Chambers  1   5   66   67   68 Ganesh Chauhan  69 Marina Ciullo  70   71 Massimiliano Cocca  72 Francis Collins  73 Heather J Cordell  51 Gail Davies  74   75 Martin H de Borst  76 Eco J de Geus  58 Ian J Deary  74   75 Joris Deelen  77 Fabiola Del Greco M  78 Cumhur Yusuf Demirkale  79 Marcus Dörr  80   81 Georg B Ehret  50   82 Roberto Elosua  83   84 Stefan Enroth  85 A Mesut Erzurumluoglu  54 Teresa Ferreira  86   87 Mattias Frånberg  88   89   90 Oscar H Franco  91 Ilaria Gandin  62 Paolo Gasparini  62   72 Vilmantas Giedraitis  92 Christian Gieger  93   94   95 Giorgia Girotto  62   72 Anuj Goel  40   41 Alan J Gow  74   96 Vilmundur Gudnason  97   98 Xiuqing Guo  99 Ulf Gyllensten  85 Anders Hamsten  88   89 Tamara B Harris  100 Sarah E Harris  63   74 Catharina A Hartman  101 Aki S Havulinna  102   103 Andrew A Hicks  78 Edith Hofer  104   105 Albert Hofman  91   106 Jouke-Jan Hottenga  58 Jennifer E Huffman  19   107   108 Shih-Jen Hwang  107   108 Erik Ingelsson  109   110 Alan James  111   112 Rick Jansen  113 Marjo-Riitta Jarvelin  1   5   114   115   116 Roby Joehanes  107   117 Åsa Johansson  85 Andrew D Johnson  107   118 Peter K Joshi  65 Pekka Jousilahti  102 J Wouter Jukema  119 Antti Jula  102 Mika Kähönen  120   121 Sekar Kathiresan  17   36   122 Bernard D Keavney  123   124 Kay-Tee Khaw  125 Paul Knekt  102 Joanne Knight  126 Ivana Kolcic  127 Jaspal S Kooner  5   67   68   128 Seppo Koskinen  102 Kati Kristiansson  102 Zoltan Kutalik  56   129 Maris Laan  130 Marty Larson  107 Lenore J Launer  100 Benjamin Lehne  1 Terho Lehtimäki  131   132 David C M Liewald  74   75 Li Lin  82 Lars Lind  133 Cecilia M Lindgren  40   87   134 YongMei Liu  135 Ruth J F Loos  28   59   136 Lorna M Lopez  74   137   138 Yingchang Lu  59 Leo-Pekka Lyytikäinen  131   132 Anubha Mahajan  40 Chrysovalanto Mamasoula  139 Jaume Marrugat  83 Jonathan Marten  19 Yuri Milaneschi  140 Anna Morgan  62 Andrew P Morris  40   141 Alanna C Morrison  142 Peter J Munson  79 Mike A Nalls  143   144 Priyanka Nandakumar  50 Christopher P Nelson  60   61 Teemu Niiranen  102   145 Ilja M Nolte  146 Teresa Nutile  70 Albertine J Oldehinkel  147 Ben A Oostra  49 Paul F O'Reilly  148 Elin Org  16 Sandosh Padmanabhan  64   149 Walter Palmas  150 Aarno Palotie  103   151   152 Alison Pattie  75 Brenda W J H Penninx  140 Markus Perola  102   103   153 Annette Peters  94   95   154 Ozren Polasek  127   155 Peter P Pramstaller  78   156   157 Quang Tri Nguyen  79 Olli T Raitakari  158   159 Meixia Ren  160 Rainer Rettig  161 Kenneth Rice  162 Paul M Ridker  23   163 Janina S Ried  94 Harriëtte Riese  147 Samuli Ripatti  103   164 Antonietta Robino  72 Lynda M Rose  23 Jerome I Rotter  99 Igor Rudan  65 Daniela Ruggiero  70   71 Yasaman Saba  165 Cinzia F Sala  53 Veikko Salomaa  102 Nilesh J Samani  60   61 Antti-Pekka Sarin  103 Reinhold Schmidt  104 Helena Schmidt  165 Nick Shrine  54 David Siscovick  166 Albert V Smith  97   98 Harold Snieder  146 Siim Sõber  130 Rossella Sorice  70 John M Starr  74   167 David J Stott  168 David P Strachan  169 Rona J Strawbridge  88   89 Johan Sundström  133 Morris A Swertz  170 Kent D Taylor  99 Alexander Teumer  81   171 Martin D Tobin  54 Maciej Tomaszewski  123   124 Daniela Toniolo  53 Michela Traglia  53 Stella Trompet  119   172 Jaakko Tuomilehto  173   174   175   176 Christophe Tzourio  21 André G Uitterlinden  91   177 Ahmad Vaez  146   178 Peter J van der Most  146 Cornelia M van Duijn  49 Anne-Claire Vergnaud  1 Germaine C Verwoert  91 Veronique Vitart  19 Uwe Völker  81   179 Peter Vollenweider  180 Dragana Vuckovic  62   181 Hugh Watkins  40   41 Sarah H Wild  182 Gonneke Willemsen  58 James F Wilson  19   65 Alan F Wright  19 Jie Yao  99 Tatijana Zemunik  183 Weihua Zhang  1   67 John R Attia  24 Adam S Butterworth  27   184 Daniel I Chasman  23   163 David Conen  185   186 Francesco Cucca  187   188 John Danesh  27   184 Caroline Hayward  19 Joanna M M Howson  27 Markku Laakso  189 Edward G Lakatta  190 Claudia Langenberg  28 Olle Melander  18 Dennis O Mook-Kanamori  26   191 Colin N A Palmer  32 Lorenz Risch  192   193   194 Robert A Scott  28 Rodney J Scott  24 Peter Sever  128 Tim D Spector  29 Pim van der Harst  195 Nicholas J Wareham  28 Eleftheria Zeggini  31 Daniel Levy  107   118 Patricia B Munroe  3   4 Christopher Newton-Cheh  134   196   197 Morris J Brown  3   4 Andres Metspalu  16 Adriana M Hung  198 Christopher J O'Donnell  199 Todd L Edwards  7 Bruce M Psaty  200   201 Ioanna Tzoulaki  1   2   5 Michael R Barnes  3   4 Louise V Wain  54   61 Paul Elliott  202   203   204   205   206 Mark J Caulfield  207   208 Million Veteran Program
Affiliations
Meta-Analysis

Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

Evangelos Evangelou et al. Nat Genet. 2018 Oct.

Erratum in

  • Publisher Correction: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.
    Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li-Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten … See abstract for full author list ➔ Evangelou E, et al. Nat Genet. 2018 Dec;50(12):1755. doi: 10.1038/s41588-018-0297-3. Nat Genet. 2018. PMID: 30429575

Abstract

High blood pressure is a highly heritable and modifiable risk factor for cardiovascular disease. We report the largest genetic association study of blood pressure traits (systolic, diastolic and pulse pressure) to date in over 1 million people of European ancestry. We identify 535 novel blood pressure loci that not only offer new biological insights into blood pressure regulation but also highlight shared genetic architecture between blood pressure and lifestyle exposures. Our findings identify new biological pathways for blood pressure regulation with potential for improved cardiovascular disease prevention in the future.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study design schematic for discovery and validation of loci. ICBP; International Consortium for Blood Pressure; N, sample size; QC, quality control; PCA, principal-component analysis; GWAS, Genome-wide Association Study; 1000G 1000 Genomes; HRC, Haplotype Reference Panel; BP: blood pressure; SNPs, single nucleotide polymorphisms; BMI, body mass index; LMM; linear mixed model; UKB, UK Biobank, MAF, minor allele frequency; HLA, Human Leukocyte Antigen; MVP, Million Veterans Program; EGCUT; Estonian Genome Center, University of Tartu; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure.
Figure 2
Figure 2
Manhattan plot showing the minimum P-value for the association across all blood pressure traits in the discovery stage excluding known and previously reported variants. Manhattan plot of the discovery genome-wide association meta-analysis in 757,601 individuals excluding variants in 274 known loci. The minimum P-value, computed using inverse variance fixed effects meta-analysis, across SBP, DBP and PP is presented. The y axis shows the –log10 P values and the x axis shows their chromosomal positions. Horizontal red and blue line represents the thresholds of P = 5 x 10-8 for genome-wide significance and P = 1 x 10-6 for selecting SNPs for replication, respectively. SNPs in blue are in LD (r2 > 0.8) with the 325 novel variants independently replicated from the 2-stage design whereas SNPs in red are in LD (r2 > 0.8) with 210 SNPs identified through the 1-stage design with internal replication. Any loci in black or grey that exceed the significance thresholds were significant in the discovery meta-analysis, but did not meet the criteria of replication in the one- or two-stage designs.
Figure 3
Figure 3
Venn Diagrams of Novel Loci Results (a) “Comparison of 1-stage and 2-stage design analysis criteria”: For all 535 novel loci, we compare the results according to the association criteria used for the one-stage and the two-stage design. Two-hundred and ten loci exclusively met the one-stage analysis criteria (P <5x10-9 in the discovery meta-analysis [N=757,601], P < 0.01 in UKB [N=458,577], P < 0.01 in ICBP [N=299,024] and concordant direction of effect between UKB and ICBP). The P-values for the discovery and the ICBP meta-analyses were calculated using inverse variance fixed effects meta-analysis. The P-values in UKB were derived from linear mixed modeling using BOLT-LMM. Of the 325 novel replicated loci from the 2-stage analysis (genome-wide significance in the combined meta-analysis, P < 0.01 in the replication meta-analysis and concordant direction of effect), 204 loci would also have met the one-stage criteria, whereas 121 were only identified by the two-stage analysis. (b) “Overlap of Associations across Blood Pressure Traits”. For all 535 novel loci, we show the number of loci associated with each blood pressure trait. We present the two-stage loci first, followed by the one-stage loci. SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure; UKB: UK Biobank; ICBP: International Consortium of Blood Pressure.
Figure 4
Figure 4
Association of blood pressure loci with lifestyle traits. Plot shows unsupervised hierarchical clustering of BP loci based on associations with lifestyle-related factors. For the sentinel SNP at each BP locus (x-axis), we calculated the -log10(P)*sign(β) (aligned to BP-raising allele) as retrieved from the Gene Atlas catalogue (http://geneatlas.roslin.ed.ac.uk). The P-values in Gene Atlas were calculated applying linear mixed models. BP loci and traits were clustered according to the Euclidean distance amongst -log10(P)*sign(β). Red squares indicate direct associations with the trait of interest and blue squares inverse associations. Only SNPs with at least one association at P <10-6 with at least one of the traits examined are annotated in the heat-map. All 901 loci are considered, both known and novel: novel loci are printed in bold font. SNPs: Single Nucleotide Polymorphisms; BP: Blood Pressure.
Figure 5
Figure 5
Association of blood pressure loci with other traits. Plot shows results from associations with other traits which were extracted from the GWAS catalog and PhenoScanner databases for the 535 novel sentinel SNPs including proxies in Linkage Disequilibrium (r2 ≥ 0.8) with genome-wide significant associations. SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; PP: Pulse Pressure; HR: Heart Rate; ECG: Electrocardiographic traits; CAD: Coronary Artery Disease CHD; Coronary Heart Disease MI; Myocardial Infraction; T2D: Type II Diabetes.
Figure 6
Figure 6
Association of blood pressure loci with other traits. Plots (a) and (b) show overlap between variants associated to (a) traits and (b) diseases in the manually-curated version of the DisGeNET database, and all variants in LD r2>0.8 with the known (red bars) SNPs from the 274 published loci, and all (green bars) BP variants from all 901 loci. Numbers on top of the bars denote the number of SNPs included in DisGeNET for the specific trait or disease. Traits/diseases with an overlap of at least 5 variants in LD with all markers are shown. The Y axis shows the percentage of variants associated with the diseases that is covered by the overlap. For the sake of clarity, the DisGeNET terms for blood pressure and hypertension are not displayed, whereas the following diseases have been combined: coronary artery disease (CAD), coronary heart disease (CHD) and myocardial infarction (MI); prostate and breast carcinoma; Crohn's and inflammatory bowel diseases.
Figure 7
Figure 7
Relationship of deciles of the genetic risk score (GRS) based on all 901 loci with blood pressure, risk of hypertension and cardiovascular disease in UK Biobank. The plots show sex-adjusted (a) mean systolic blood pressure (SBP) and odds ratios of hypertension (HTN) (N=364,520) and (b) odds ratios of incident cardiovascular disease (CVD), myocardial infarction (MI) and stroke (N=392,092), comparing each of the upper nine GRS deciles with the lowest decile; dotted lines represent the upper 95% confidence intervals.
Figure 8
Figure 8
Known and novel BP associations in the TGFβ signalling pathway. Genes with known associations with BP are indicated in cyan. Genes with novel associations with BP reported in this study are indicated in red. TGFβ pathway was derived from an ingenuity canonical pathway. BP: Blood Pressure.

References

    1. Forouzanfar MH, et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA. 2017;317:165–182. - PubMed
    1. Munoz M, et al. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat Genet. 2016;48:980–3. - PMC - PubMed
    1. Poulter NR, Prabhakaran D, Caulfield M. Hypertension. Lancet. 2015;386:801–12. - PubMed
    1. Feinleib M, et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol. 1977;106:284–5. - PubMed
    1. Cabrera CP, et al. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics. Wiley Interdiscip Rev Syst Biol Med. 2015;7:73–90. - PubMed

Publication types

MeSH terms

Grants and funding