Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 Nov;251(5 Pt 2):F765-76.
doi: 10.1152/ajprenal.1986.251.5.F765.

Reactive oxygen species: production and role in the kidney

Review

Reactive oxygen species: production and role in the kidney

L Baud et al. Am J Physiol. 1986 Nov.

Abstract

Reactive oxygen species (ROS) are formed by incomplete reduction of molecular oxygen. They include superoxide anion (O2-.), hydrogen peroxide (H2O2), hydroxyl radical (OH.), and singlet oxygen (1O2). ROS may induce different types of cell injury, particularly lipid peroxidation and membrane damage. ROS have been shown to play an essential role in the mechanisms of experimental models of several renal diseases: ischemic acute renal failure, renal graft rejection, acute glomerulonephritis, and toxic renal diseases. They are produced by the renal cells and also by the inflammatory bone marrow-derived cells invading the renal tissue. ROS, regardless of their origin, may degrade the glomerular basement membrane and alter the glomerular and tubular cell functions. Particularly, they produce an increase in cyclic AMP synthesis and prostaglandin production in the glomeruli. Recent studies have shown that the glomerular mesangial cells themselves generated ROS on stimulation by phagocytosis of foreign particles or exposure to the complement membrane attack complex or platelet-activating factor. Production of ROS is in narrow relationship with the metabolism of arachidonic acid. Conversion of this fatty acid via the lipoxygenase pathway is associated with an increase of ROS, whereas its transformation into prostaglandins via the cyclooxygenase pathway results in the opposite effect. Production of ROS in activated mesangial cells can be inhibited by glucocorticoids via a receptor-mediated mechanism. The fact that some of these characteristics are different in leukocytes suggests the possibility in the future of the more specific pharmacological control of the inflammatory process in the glomerular mesangium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources