Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov 5;15(11):4777-4800.
doi: 10.1021/acs.molpharmaceut.8b00691. Epub 2018 Oct 3.

TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings

Affiliations
Review

TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings

Maryam A Shetab Boushehri et al. Mol Pharm. .

Abstract

Toll-like Receptor 4 (TLR4) agonists have had a long journey in the field of cancer immunotherapy. Nevertheless, despite the remarkable number of the TLR4 ligands that have gone through various preclinical and clinical stages, only two (Bacillus Calmette-Guérin (BCG) and monophosphoryl lipid A (MPLA)) have hitherto obtained the FDA approval for clinical application in cancer treatment. This paper provides a comprehensive review of the TLR4 agonists' journey as cancer active immunotherapeutics. Following a brief discussion of the rationale behind the use of TLR ligands in cancer immunotherapy, we will initially focus on the forerunner of the TLR4 agonists, bacterial lipopolysaccharide (LPS). Within this context, the potentials and shortcomings of immunotherapy with this agent will be addressed, the strategies that have been devised to enhance the associated therapeutic outcome will be discussed, and the consequent achievements and shortcomings will be summarized. Subsequently, further and perhaps less well-known, molecular, bacterial, and viral TLR4 agonists with potential for cancer immunotherapy will be introduced, and if present, the outcome of the preclinical and clinical investigations of these agents will be reviewed. Finally, a look will be cast upon the promising souvenirs of the relatively new arena of nanotechnology, where TLR4 activating nanoparticulate systems will be proposed as potential candidates for the future development of this field.

Keywords: TLR4 agonists; cancer immunotherapy; lipopolysaccharide.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms