Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep 17;8(3):30.
doi: 10.3390/jpm8030030.

The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology

Affiliations
Review

The Role of Next-Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology

Margaret Morash et al. J Pers Med. .

Abstract

Precision medicine seeks to use genomic data to help provide the right treatment to the right patient at the right time. Next-generation sequencing technology allows for the rapid and accurate sequencing of many genes at once. This technology is becoming more common in oncology, though the clinical benefit of incorporating it into precision medicine strategies remains under significant debate. In this manuscript, we discuss the early findings of the impact of next-generation sequencing on cancer patient outcomes. We investigate why not all patients with genomic variants linked to a specific therapy receive that therapy and describe current barriers. Finally, we explore the current state of health insurance coverage for individual genome sequencing and targeted therapies for cancer. Based on our analysis, we recommend increased transparency around the determination of "actionable mutations" and a heightened focus on investigating the variations in health insurance coverage across patients receiving sequencing-matched therapies.

Keywords: health insurance coverage; next generation sequencing; oncology; patient outcomes; precision medicine.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Outline of Precision Medicine in Oncology. Cancer patients have genomic, clinical, and insurance information that is evaluated by the physician, along with patient preferences, to design a potential treatment plan via shared-decision making. The patient’s outcomes are evaluated both to update their individual treatment plan as well as to inform future healthcare policy making. Once enough evidence amasses to show the clear benefit of a certain treatment, changes in healthcare policy affect (1) the clinical guidelines physicians consult in designing care, (2) the types of treatments that health insurance policies cover, and (3) the cost of treatment to the patient.

References

    1. Bode A.M., Dong Z. Precision oncology-the future of personalized cancer medicine? NPJ Precis. Oncol. 2017;1:2. doi: 10.1038/s41698-017-0010-5. - DOI - PMC - PubMed
    1. Collins F. Precision Oncology: Gene Changes Predict Immunotherapy Response|NIH Director’s Blog. [(accessed on 10 November 2017)]; Available online: https://directorsblog.nih.gov/2017/06/20/precision-oncology-gene-changes...
    1. Schwartzberg L., Kim E.S., Liu D., Schrag D. Precision oncology: Who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book. 2017;37:160–169. doi: 10.14694/EDBK_174176. - DOI - PubMed
    1. AACR Project GENIE Consortium AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7:818–831. doi: 10.1158/2159-8290.CD-17-0151. - DOI - PMC - PubMed
    1. Tsimberidou A.-M., Iskander N.G., Hong D.S., Wheler J.J., Falchook G.S., Fu S., Piha-Paul S., Naing A., Janku F., Luthra R., et al. Personalized medicine in a phase I clinical trials program: The MD Anderson Cancer Center initiative. Clin. Cancer Res. 2012;18:6373–6383. doi: 10.1158/1078-0432.CCR-12-1627. - DOI - PMC - PubMed