Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 1;145(19):dev165688.
doi: 10.1242/dev.165688.

Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis

Affiliations

Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis

Yaning Cui et al. Development. .

Abstract

The plant transmembrane receptor kinase FLAGELLIN SENSING 2 (FLS2) is crucial for innate immunity. Although previous studies have reported FLS2-mediated signal transduction and endocytosis via the clathrin-mediated pathway, whether additional endocytic pathways affect FLS2-mediated defense responses remains unclear. Here, we show that the Arabidopsis thaliana sterol-deficient mutant steroid methyltransferase 1 displays defects in immune responses induced by the flagellin-derived peptide flg22. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) coupled with single-particle tracking showed that the spatiotemporal dynamics of FLS2-GFP changed on a millisecond time scale and that the FLS2-GFP dwell time at the plasma membrane increased in cells treated with a sterol-extracting reagent when compared with untreated counterparts. We further demonstrate that flg22-induced FLS2 clustering and endocytosis involves the sterol-associated endocytic pathway, which is distinct from the clathrin-mediated pathway. Moreover, flg22 enhanced the colocalization of FLS2-GFP with the membrane microdomain marker Flot 1-mCherry and FLS2 endocytosis via the sterol-associated pathway. This indicates that plants may respond to pathogen attacks by regulating two different endocytic pathways. Taken together, our results suggest the key role of sterol homeostasis in flg22-induced plant defense responses.

Keywords: Endocytosis; FLS2; Plant immunity; Spatiotemporal dynamics; Sterols; VA-TIRFM.

PubMed Disclaimer

Conflict of interest statement

Competing interestsThe authors declare no competing or financial interests.

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources