Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec;37(12):1681-1692.
doi: 10.1007/s00299-018-2339-9. Epub 2018 Sep 18.

Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots

Affiliations

Overexpression of SmbHLH148 induced biosynthesis of tanshinones as well as phenolic acids in Salvia miltiorrhiza hairy roots

Bingcong Xing et al. Plant Cell Rep. 2018 Dec.

Abstract

SmbHLH148 activated the whole biosynthetic pathways of phenolic acids and tanshinones, thus upregulated the production of both the two groups of pharmaceutical ingredients in Salvia miltiorrhiza. Phenolic acids and tanshinones are the two important groups of pharmaceutical ingredients presented in Salvia miltiorrhiza Bunge. The bHLH transcription factors could regulate secondary metabolism efficiently in plants. However, there are only some MYCs have been studied on regulation of either phenolic acids or tanshinones biosynthesis. In this study, a bHLH TF named SmbHLH148, which is homologous to AtbHLH148, AtbHLH147 and CubHLH1, was isolated and functionally characterized from S. miltiorrhiza. Transcription of SmbHLH148 could be intensely induced by ABA and also be moderately induced by MeJA and GA. SmbHLH148 is present in all the six tissues and mostly expressed in fibrous root and flowers. Subcellular localization analysis found that SmbHLH148 was localized in the nucleus. Overexpression of SmbHLH148 significantly increased not only three phenolic acids components accumulation but also three tanshinones content. Content of caffeic acid, rosmarinic acid and salvianolic acid B were reached to 2.87-, 4.00- and 5.99-fold of the control in the ObHLH148-3, respectively. Content of dihydrotanshinone I, cryptotanshinone, and tanshinone I were also present highest in ObHLH148-3, reached 2.5-, 5.04- and 3.97-fold of the control, respectively. Expression analysis of pathway genes of phenolic acids and tanshinones in transgenic lines showed that most of them were obviously upregulated. Moreover, transcription of AREB and JAZs were also induced in SmbHLH148 overexpression lines. These results suggested that SmbHLH148 might be taken part in ABA and MeJA signaling and activated almost the whole biosynthetic pathways of phenolic acids and tanshinones, thus the production of phenolic acids and tanshinones were upregulated.

Keywords: Phenolic acids; Salvia miltiorrhiza; Secondary metabolism; Tanshinones; Transgenic; bHLH transcription factor.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Antje F, Katja M, Erich LBE G (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116 - DOI
    1. Antonio G, Mingzhe Z, LJ M, M. LA (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/MYB transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827 - DOI
    1. Bai Z, Xia P, Wang R, Jiao J, Ru M, Liu J, Liang Z (2017) Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. PLoS One 12:e0185322 - DOI
    1. Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288 - DOI
    1. Cheng QQ, Su P, Hu YT, He YF, Gao W, Huang LQ (2014) RNA interference-mediated repression of SmCPS (copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36:363–369 - DOI

LinkOut - more resources