Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 31;121(9):091102.
doi: 10.1103/PhysRevLett.121.091102.

Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817

Affiliations

Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817

Soumi De et al. Phys Rev Lett. .

Erratum in

Abstract

We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the tidal deformabilities and radii of neutron stars. We perform a Bayesian parameter estimation with the source location and distance informed by electromagnetic observations. We also assume that the two stars have the same equation of state; we demonstrate that, for stars with masses comparable to the component masses of GW170817, this is effectively implemented by assuming that the stars' dimensionless tidal deformabilities are determined by the binary's mass ratio q by Λ_{1}/Λ_{2}=q^{6}. We investigate different choices of prior on the component masses of the neutron stars. We find that the tidal deformability and 90% credible interval is Λ[over ˜]=222_{-138}^{+420} for a uniform component mass prior, Λ[over ˜]=245_{-151}^{+453} for a component mass prior informed by radio observations of Galactic double neutron stars, and Λ[over ˜]=233_{-144}^{+448} for a component mass prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron stars across all mass priors of 8.9≤R[over ^]≤13.2 km, with a mean value of ⟨R[over ^]⟩=10.8 km. Our results are the first measurement of tidal deformability with a physical constraint on the star's equation of state and place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.

PubMed Disclaimer

Similar articles

  • Constraining the Neutron Star Equation of State Using Multiband Independent Measurements of Radii and Tidal Deformabilities.
    Fasano M, Abdelsalhin T, Maselli A, Ferrari V. Fasano M, et al. Phys Rev Lett. 2019 Oct 4;123(14):141101. doi: 10.1103/PhysRevLett.123.141101. Phys Rev Lett. 2019. PMID: 31702173
  • Gravitational-Wave Constraints on the Neutron-Star-Matter Equation of State.
    Annala E, Gorda T, Kurkela A, Vuorinen A. Annala E, et al. Phys Rev Lett. 2018 Apr 27;120(17):172703. doi: 10.1103/PhysRevLett.120.172703. Phys Rev Lett. 2018. PMID: 29756823
  • GW170817: Measurements of Neutron Star Radii and Equation of State.
    Abbott BP, Abbott R, Abbott TD, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari RX, Adya VB, Affeldt C, Agarwal B, Agathos M, Agatsuma K, Aggarwal N, Aguiar OD, Aiello L, Ain A, Ajith P, Allen B, Allen G, Allocca A, Aloy MA, Altin PA, Amato A, Ananyeva A, Anderson SB, Anderson WG, Angelova SV, Antier S, Appert S, Arai K, Araya MC, Areeda JS, Arène M, Arnaud N, Arun KG, Ascenzi S, Ashton G, Ast M, Aston SM, Astone P, Atallah DV, Aubin F, Aufmuth P, Aulbert C, AultONeal K, Austin C, Avila-Alvarez A, Babak S, Bacon P, Badaracco F, Bader MKM, Bae S, Baker PT, Baldaccini F, Ballardin G, Ballmer SW, Banagiri S, Barayoga JC, Barclay SE, Barish BC, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta D, Bartlett J, Bartos I, Bassiri R, Basti A, Batch JC, Bawaj M, Bayley JC, Bazzan M, Bécsy B, Beer C, Bejger M, Belahcene I, Bell AS, Beniwal D, Bensch M, Berger BK, Bergmann G, Bernuzzi S, Bero JJ, Berry CPL, Bersanetti D, Bertolini A, Betzwieser J, Bhandare R, Bilenko IA, Bilgili SA, Billingsley G, Billman CR, Birch J, Birney R, Birnholtz O, Biscans S, Biscoveanu S, Bisht A, Bitossi M, Bizouard MA, Blackburn JK, Blackman J, Blair CD, Blair DG, Blair RM… See abstract for full author list ➔ Abbott BP, et al. Phys Rev Lett. 2018 Oct 19;121(16):161101. doi: 10.1103/PhysRevLett.121.161101. Phys Rev Lett. 2018. PMID: 30387654
  • Relativistic Binaries in Globular Clusters.
    Benacquista MJ, Downing JMB. Benacquista MJ, et al. Living Rev Relativ. 2013;16(1):4. doi: 10.12942/lrr-2013-4. Epub 2013 Mar 4. Living Rev Relativ. 2013. PMID: 28179843 Free PMC article. Review.
  • Surface emission from neutron stars and implications for the physics of their interiors.
    Ozel F. Ozel F. Rep Prog Phys. 2013 Jan;76(1):016901. doi: 10.1088/0034-4885/76/1/016901. Epub 2012 Dec 12. Rep Prog Phys. 2013. PMID: 23234858 Review.

Cited by

  • Kilonovae.
    Metzger BD. Metzger BD. Living Rev Relativ. 2020;23(1):1. doi: 10.1007/s41114-019-0024-0. Epub 2019 Dec 16. Living Rev Relativ. 2020. PMID: 31885490 Free PMC article. Review.
  • The new frontier of gravitational waves.
    Miller MC, Yunes N. Miller MC, et al. Nature. 2019 Apr;568(7753):469-476. doi: 10.1038/s41586-019-1129-z. Epub 2019 Apr 24. Nature. 2019. PMID: 31019316 Review.

LinkOut - more resources