Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep 19;6(3):65.
doi: 10.3390/vaccines6030065.

BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target?

Affiliations
Review

BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target?

Thomas J van Ee et al. Vaccines (Basel). .

Abstract

Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.

Keywords: BDCA1+CD14+ cells; cancer; cancer immunotherapy; dendritic cells; immune suppression; tumor microenvironment.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure A1
Figure A1
Frequency of BDCA1+CD14+ cells in PBMCs of leukemia patients. Frequency of cells was analyzed by flow cytometry in BMPC of healthy controls and patients with acute lymphoid leukemia (ALL; n = 2), chronic lymphoid leukemia (CLL; n = 1), biphenotypical leukemia (BAL; n = 2) or idiopathic myelofibrosis (IMF; n = 1). Each dot represents PBMCs of a single patient. Mean ± SD.
Figure A2
Figure A2
Flow cytometry gating strategy for BDCA1+CD14+ cells in PBMCs of patients with leukemia. Lymphocytes and monocytes were gated based on forward scatter and side scatter; single cells were gated on the basis of side scatter width and side scatter height followed by forward scatter width and forward scatter height; viable cells were eFluor506 negative; BDCA1+CD14+ cells were identified within the population of Lineage-positive and HLA-DR+ cells.
Figure 1
Figure 1
Frequency of BDCA1+CD14+ cells in peripheral blood mononuclear cells (PBMCs) of leukemia patients. Frequency of cells was analyzed by flow cytometry in PBMCs of healthy controls (n = 3) and patients with acute myeloid leukemia (AML; n = 7), chronic myeloid leukemia (CML; n = 3) or a CML blast crisis (n = 2). Each dot represents PBMCs of a single patient. Mean ± SD. * p < 0.05%; One-Way ANOVA with Tukey’s multiple comparison test).

Similar articles

Cited by

References

    1. Anguille S., Smits E.L., Bryant C., Van Acker H.H., Goossens H., Lion E., Fromm P.D., Van Tendeloo V.F., Berneman Z.N. Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol. Rev. 2015;67:731–753. doi: 10.1124/pr.114.009456. - DOI - PubMed
    1. Fouad Y.A., Aanei C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017;7:1016–1036. doi: 10.1016/j.jmwh.2009.11.004. - DOI - PMC - PubMed
    1. Bol K.F., Schreibelt G., Gerritsen W.R., De Vries I.J.M., Figdor C.G. Dendritic cell-based immunotherapy: State of the art and beyond. Clin. Cancer Res. 2016;22:1897–1906. doi: 10.1158/1078-0432.CCR-15-1399. - DOI - PubMed
    1. Boudewijns S., Bloemendal M., Gerritsen W.R., de Vries I.J.M., Schreibelt G. Dendritic cell vaccination in melanoma patients: From promising results to future perspectives. Hum. Vaccin. Immunother. 2016;12:2523–2528. doi: 10.1080/21645515.2016.1197453. - DOI - PMC - PubMed
    1. Van der Woude L.L., Gorris M.A.J., Halilovic A., Figdor C.G., De Vries I.J.M. Migrating into the Tumor: A Roadmap for T Cells. Trends Cancer. 2017;3:797–808. doi: 10.1016/j.trecan.2017.09.006. - DOI - PubMed