Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 21;19(1):693.
doi: 10.1186/s12864-018-5077-z.

RNA-seq analysis of gene expression changes during pupariation in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

Affiliations

RNA-seq analysis of gene expression changes during pupariation in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

Er-Hu Chen et al. BMC Genomics. .

Abstract

Background: The oriental fruit fly, Bactrocera dorsalis (Hendel) has been considered to be one of the most important agricultural pest around the world. As a holometabolous insect, larvae must go through a metamorphosis process with dramatic morphological and structural changes to complete their development. To better understand the molecular mechanisms of these changes, RNA-seq of B. dorsalis from wandering stage (WS), late wandering stage (LWS) and white puparium stage (WPS) were performed.

Results: In total, 11,721 transcripts were obtained, out of which 1914 genes (578 up-regulated and 1336 down-regulated) and 2047 genes (655 up-regulated and 1392 down-regulated) were found to be differentially expressed between WS and LWS, as well as between WS and WPS, respectively. Of these DEGs, 1862 and 1996 genes were successfully annotated in various databases. The analysis of RNA-seq data together with qRT-PCR validation indicated that during this transition, the genes in the oxidative phosphorylation pathway, and genes encoding P450s, serine protease inhibitor, and cuticular proteins were down-regulated, while the serine protease genes were up-regulated. Moreover, we found some 20-hydroxyecdysone (20E) biosynthesis and signaling pathway genes had a higher expression in the WS, while the genes responsible for juvenile hormone (JH) synthesis, degradation, signaling and transporter pathways were down-regulated, suggesting these genes might be involved in the process of larval pupariation in B. dorsalis. For the chitinolytic enzymes, the genes encoding chitinases (chitinase 2, chitinase 5, chitinase 8, and chitinase 10) and chitin deacetylase might play the crucial role in the degradation of insect chitin with their expressions significantly increased during the transition. Here, we also found that chitin synthase 1A might be involved in the chitin synthesis of cuticles during the metamorphosis in B. dorsalis.

Conclusions: Significant changes at transcriptional level were identified during the larval pupariation of B. dorsalis. Importantly, we also obtained a vast quantity of RNA-seq data and identified metamorphosis associated genes, which would all help us to better understand the molecular mechanism of metamorphosis process in B. dorsalis.

Keywords: Bactrocera dorsalis; Gene expression; Metamorphosis; Pupariation; RNA-Seq.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

No special permits were required to collect oriental fruit flies.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a The morphology of three developmental stages including wandering stage (WS), late wandering stage (LWS), and white puparium stage (WPS) during the pupariation of B. dorsalis. Numbers of differentially expressed genes (DEGs, FDR < 0.01 and |log2 ratio| ≥ 1), the up-regulated genes were represented by a red dot and down-regulated genes by a green dot. b DEGs of WS vs. LWS (c) and WS vs. WPS
Fig. 2
Fig. 2
KEGG pathway classification for differentially expressed genes (DEGs) during the pupariation of B. dorsalis. a KEGG pathway classification for DEGs between wandering stage (WS) and late wandering satge. b KEGG classification of DEGs in WS and white puparium stage (WPS)
Fig. 3
Fig. 3
KEGG significant enrichment analysis for differentially expressed genes (DEGs). a KEGG significant enrichment analysis for the up-regulated genes between wandering stage (WS) and late wandering stage (LWS). b KEGG significant enrichment analysis for the down-regulated genes that between WS and LWS. c KEGG significant enrichment analysis for the up-regulated genes between WS and white puparium stage (WPS). d KEGG significant enrichment analysis for the down-regulated genes between WS and WPS
Fig. 4
Fig. 4
The KEGG pathway of the oxidative phosphorylation pathway responds to pupariation, and genes highlighted in green are enriched and down-regulated. a wandering stage (WS) vs. late wandering stage. b WS vs. white puparium stage
Fig. 5
Fig. 5
The expression patterns (FPKM value) of five 20E biosynthesis and seven signaling pathway genes during the pupariation in Bactrocera dorsalis. Three replications were conducted, and the data are presented as mean ± SE. Significant differences among the three treatments were analyzed by one-way analysis. Bars with different letters above them differ significantly at P < 0.05
Fig. 6
Fig. 6
Expression of the selected 17 genes by qRT-PCR. a Expression profiles of genes involved in the chitin degradation pathway. b Expression profiles of genes involved in the chitin biosynthesis pathway. The data is presented as mean ± SE of three replications. Stages that are statistically different (P < 0.05) are marked with a different letter (one-way analysis)

Similar articles

Cited by

References

    1. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK, Yeates DK. Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol. 2005;50(1):293–319. doi: 10.1146/annurev.ento.50.071803.130428. - DOI - PubMed
    1. Wang H, Jin L, Peng T, Zhang H, Chen Q, Hua Y. Identification of cultivable bacteria in the intestinal tract of Bactrocera dorsalis from three different populations and determination of their attractive potential. Pest Manag Sci. 2014;70(1):80–87. doi: 10.1002/ps.3528. - DOI - PubMed
    1. Shen GM, Dou W, Niu JZ, Jiang HB, Yang WJ, Jia FX, Hu F, Cong L, Wang JJ. Transcriptome analysis of the oriental fruit fly (Bactrocera dorsalis) PLoS One. 2011;6(12):e29127. doi: 10.1371/journal.pone.0029127. - DOI - PMC - PubMed
    1. Jan Z, Fraenkel G. The mechanism of puparium formation in flies. J Exp Zool Part B. 2010;179(3):315–323.
    1. Nachman RJ, Strey A, Zubrzak P, Zdarek J. A comparison of the pupariation acceleration activity of pyrokinin-like peptides native to the flesh fly: which peptide represents the primary pupariation factor? Peptides. 2006;27(3):527–533. doi: 10.1016/j.peptides.2005.08.023. - DOI - PubMed

MeSH terms

Substances

LinkOut - more resources