Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Nov:70:190-198.
doi: 10.1016/j.ctrv.2018.08.008. Epub 2018 Aug 21.

Multiple modes of action of eribulin mesylate: Emerging data and clinical implications

Affiliations
Free article
Review

Multiple modes of action of eribulin mesylate: Emerging data and clinical implications

Javier Cortes et al. Cancer Treat Rev. 2018 Nov.
Free article

Abstract

Eribulin mesylate (eribulin) is a synthetic analogue of the marine-sponge natural product halichondrin B. Eribulin exhibits potent antiproliferative activities against a variety of human cancer cell types in vitro and in vivo, and is used for the treatment of certain patients with advanced breast cancer or liposarcoma who are refractory to other treatments. The antiproliferative effects of eribulin have long been attributed to its antimitotic activities. Unlike other microtubule-targeting agents, eribulin inhibits microtubule polymerization through specific plus end binding, thus interfering with microtubule dynamic instability. Non-mitotic effects of eribulin on tumor biology have also been established in laboratory settings including: tumor vasculature remodeling, increased vascular perfusion, reduced hypoxia, and phenotypic changes involving reversal of epithelial-to-mesenchymal transition (EMT), resulting in reduced capacities for migration, invasion, and seeding lung metastases in experimental models. Preclinical data suggest that increased perfusion following eribulin treatment improves delivery of subsequent drugs. Supporting evidence for eribulin's non-mitotic effects in the clinical setting include increased tumor oxygen saturation, reduced hypoxia, phenotype changes consistent with EMT reversal, and genotype changes consistent with shifts from nonendocrine-responsive, luminal B, to endocrine-responsive, luminal A, breast cancer subtypes. Finally, potential biomarkers for eribulin response have been established based on tumor-phenotype and gene-expression profiles. Overall, preclinical and clinical data support both antimitotic and non-mitotic mechanisms of eribulin that may underlie the survival benefit observed in various clinical trials.

Keywords: Antimitotic; Epithelial-to-mesenchymal transition; Eribulin; Metastatic breast cancer; Survival benefit; Tumor microenvironment.

PubMed Disclaimer

MeSH terms

LinkOut - more resources