Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 17;140(41):13387-13391.
doi: 10.1021/jacs.8b08379. Epub 2018 Oct 5.

Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles

Affiliations

Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles

Xuan Yang et al. J Am Chem Soc. .

Abstract

Renewable production of ammonia, a building block for most fertilizers, via the electrochemical nitrogen reduction reaction (ENRR) is desirable; however, a selective electrocatalyst is lacking. Here we show that vanadium nitride (VN) nanoparticles are active, selective, and stable ENRR catalysts with an ENRR rate and a Faradaic efficiency (FE) of 3.3 × 10-10 mol s-1 cm-2 and 6.0% at -0.1 V within 1 h, respectively. ENRR with 15N2 as the feed produces both 14NH3 and 15NH3, which indicates that the reaction follows a Mars-van Krevelen mechanism. Ex situ X-ray photoelectron spectroscopy characterization of fresh and spent catalysts reveals that multiple vanadium oxide, oxynitride, and nitride species are present on the surface and identified VN0.7O0.45 as the active phase in the ENRR. Operando X-ray absorption spectroscopy and catalyst durability test results corroborate this hypothesis and indicate that the conversion of VN0.7O0.45 to the VN phase leads to catalyst deactivation. We hypothesize that only the surface N sites adjacent to a surface O are active in the ENRR. An ammonia production rate of 1.1 × 10-10 mol s-1 cm-2 can be maintained for 116 h, with a steady-state turnover number of 431.

PubMed Disclaimer

Publication types

LinkOut - more resources