Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;95(1):64-75.
doi: 10.1080/09553002.2018.1511926. Epub 2018 Sep 24.

Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure

Affiliations

Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure

Ellina Macaeva et al. Int J Radiat Biol. 2019 Jan.

Abstract

Purpose: In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation.

Materials and methods: We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total).

Results: Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment.

Conclusions: Our results represent an important advancement in the application of gene expression for biodosimetry purposes.

Keywords: Biodosimetry; dose prediction; gene expression; radiation; time point prediction.

PubMed Disclaimer

Publication types

LinkOut - more resources