Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 15:534:447-458.
doi: 10.1016/j.jcis.2018.09.047. Epub 2018 Sep 17.

Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy

Affiliations

Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy

Deval Prasad Bhattarai et al. J Colloid Interface Sci. .

Abstract

In the present work, polypyrrole hollow fibers (PPy-HFs) were fabricated by sacrificial removal of soft templates of electrospun polycaprolactone (PCL) fibers with polypyrrole (PPy) coating through chemical polymerization of pyrrole monomer. Different physicochemical properties of as-fabricated PPy-HFs were then studied by Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, Differential scanning calorimetry/Thermogravimetric analysis (DSC/TGA), and X-ray photoelectron spectroscopy (XPS). The photothermal activity of PPy-HF was studied by irradiating 808-nm near infra-red (NIR) light under different power values with various concentrations of PPy-HFs dispersed in phosphate buffer solution (PBS, pH 7.4). These PPy-HFs exhibited enhanced photothermal performance compared with polypyrrole nanoparticles (PPy-NPs). Furthermore, these PPy-HFs showed photothermal effect that was laser-power- and concentration-dependent. The photothermal toxicity of the resulting nanofiber was evaluated using cell counting kit-8 (CCK-8) and live and dead cell assays. Results showed that these PPy-HFs were more effective in killing cancer cells under NIR irradiation. In contrast, hollow-fiber showed no cytotoxicity without NIR exposure. Among different nanofiber formulations, PPy-160 exhibited the highest photothermal toxicity. It could be explained by its enhanced photothermal performance compared to other specimens. The resulting PPy-HFs showed superior drug-loading capacity to PPy-NPs. This might be attributed to adequate binding of the drug into both luminal and abluminal hollow-fiber surfaces. Fabrication of this substrate type opens a promising new avenue for architectural design of biocompatible organic polymer for biomedical field.

Keywords: Doxorubicin; Electrospinning; Hollow fiber; Photothermal therapy; Polypyrrole.

PubMed Disclaimer

LinkOut - more resources