Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 10:9:2138.
doi: 10.3389/fmicb.2018.02138. eCollection 2018.

Escherichia coli Cells Exposed to Lethal Doses of Electron Beam Irradiation Retain Their Ability to Propagate Bacteriophages and Are Metabolically Active

Affiliations

Escherichia coli Cells Exposed to Lethal Doses of Electron Beam Irradiation Retain Their Ability to Propagate Bacteriophages and Are Metabolically Active

Anne-Sophie Charlotte Hieke et al. Front Microbiol. .

Abstract

Reports in the literature suggest that bacteria exposed to lethal doses of ionizing radiation, i.e., electron beams, are unable to replicate yet they remain metabolically active. To investigate this phenomenon further, we electron beam irradiated Escherichia coli cells to a lethal dose and measured their membrane integrity, metabolic activity, ATP levels and overall cellular functionality via bacteriophage infection. We also visualized the DNA double-strand breaks in the cells. We used non-irradiated (live) and heat-killed cells as positive and negative controls, respectively. Our results show that the membrane integrity of E. coli cells is maintained and that the cells remain metabolically active up to 9 days post-irradiation when stored at 4°C. The ATP levels in lethally irradiated cells are similar to non-irradiated control cells. We also visualized extensive DNA damage within the cells and confirmed their cellular functionality based on their ability to propagate bacteriophages for up to 9 days post-irradiation. Overall, our findings indicate that lethally irradiated E. coli cells resemble live non-irradiated cells more closely than heat-killed (dead) cells.

Keywords: DNA damage; bacteria; bacteriophages; electron beam; ionizing radiation.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Representative images depicting membrane integrity in eBeam inactivated, heat-killed, and live Escherichia coli cells. Cultures were incubated at 4°C in LB broth post-treatment and images were taken at 0, 4, 24 h, and 9 days.
FIGURE 2
FIGURE 2
Representative images showing the detection of DNA double-strand breaks in E. coli cells using the neutral comet assay. Cells were exposed to either a lethal eBeam irradiation dose (absorbed dose: 7.04 kGy), a lethal heat treatment (70°C for 60 min) or no treatment. Arrows indicate DNA tails (control), putative DNA fragments (eBeam) or both (heat-killed).
FIGURE 3
FIGURE 3
(A) Metabolic activity of eBeam inactivated, heat-killed, and live E. coli cells. Heat-killed cells did not have measurable levels. Bacterial cultures were incubated at 4°C in LB broth post-treatment and measurements were taken at 0, 4, 24 h, and 9 days. Two independent experiments were performed, with standard deviations shown. C denotes statistical significance (p < 0.0001). (B) ATP levels of eBeam inactivated, heat-killed, and non-treated E. coli cells. Samples were incubated at 4°C in LB broth post-treatment and measurements were taken at 0, 4, 24 h, and 9 days. Two independent experiments were performed, with standard deviations shown. ∗∗Denotes statistical significance (p < 0.01); ∗∗∗denotes statistical significance (p < 0.001).
FIGURE 4
FIGURE 4
Bacteriophage λ numbers after incubation (at 37°C for 24 h) with eBeam inactivated host cells (EB), heat-killed host cells (HK), non-treated live host cells (PC – positive control), and no host cells (NC – negative control). The 0, 4, 24 h, and day 9 time points represent the time after host cell treatment. Two independent experiments were performed, with standard deviations shown. Denotes statistical significance (p < 0.05); ∗∗denotes statistical significance (p < 0.01); ∗∗∗∗denotes statistical significance (p < 0.0001).
FIGURE 5
FIGURE 5
T4 bacteriophage numbers after incubation (at 37°C for 24 h) with eBeam inactivated host cells (EB), heat-killed host cells (HK), non-treated live host cells (PC – positive control), and no host cells (NC – negative control). The 0, 4, 24 h, and day 9 time points represent the time after host cell treatment. Two independent experiments were performed, with standard deviations shown. ∗∗∗Denotes statistical significance (p < 0.001); ∗∗∗∗denotes statistical significance (p < 0.0001).
FIGURE 6
FIGURE 6
T7 bacteriophage numbers after incubation (at 37°C for 24 h) with eBeam inactivated host cells (EB), heat-killed host cells (HK), non-treated live host cells (PC – positive control), and no host cells (NC – negative control). The 0, 4, 24 h, and day 9 time points represent the time after host cell treatment. Two independent experiments were performed, with standard deviations shown. ∗∗∗∗Denotes statistical significance (p < 0.0001).

Similar articles

Cited by

References

    1. Ackermann H.-W. (2006). “Classification of bacteriophages,” in The Bacteriophages ed. Calendar R. (New York, NY: Oxford University Press; ) 8–16.
    1. Adams M. H. (1959). Bacteriophages. New York, NY: Interscience Publishers, Inc.
    1. Adelman K., Orsini G., Kolb A., Graziani L., Brody E. N. (1997). The interaction between the AsiA protein of bacteriophage T4 and the sigma(70) subunit of Escherichia coli RNA polymerase. J. Biol. Chem. 272 27435–27443. 10.1074/jbc.272.43.27435 - DOI - PubMed
    1. Baranska S., Gabig M., Wegrzyn A., Konopa G., Herman-Antosiewicz A., Hernandez P. (2001). Regulation of the switch from early to late bacteriophage lambda DNA replication. Microbiology 147 535–547. 10.1099/00221287-147-3-535 - DOI - PubMed
    1. Bhagwat M., Nossal N. G. (2001). Bacteriophage T4 RNase H removes both RNA primers and adjacent DNA from the 5′ end of lagging strand fragments. J. Biol. Chem. 276 28516–28524. 10.1074/jbc.M103914200 - DOI - PubMed

LinkOut - more resources