Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan 5;262(1):110-5.

Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+

  • PMID: 3025196
Free article

Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+

A Yoda et al. J Biol Chem. .
Free article

Abstract

The phosphorylated intermediate (EP) of the Na,K-ATPase proteoliposomes (PL) prepared from the electric eel enzyme is composed of an ADP-sensitive K+-insensitive form (E1P), an ADP- and K+-sensitive form (E*P), and a K+-sensitive ADP-insensitive form (E2P). The composition of the intermediate varied with the cholesterol content of the lipid bilayer. The PL containing less than 30 mol % cholesterol (LCPL) formed E2P-rich EP in the presence of 10 mM Na+ on both sides at 15 degrees C, while the PL containing more than 35 mol % cholesterol (HCPL) formed E*P-rich EP under the same condition. In the presence of ionophore (monensin, nigericin, A23187), the HCPL formed E2P-rich EP as reported in the preceding paper. The turnover rate of Na-ATPase activity (the ratio of Na-ATPase to the EP level) in the LCPL was lower than that in the HCPL, and the addition of 20 microM monensin or A23187 to the HCPL reduced the Na-ATPase activity. The coupling ratio of Na+ influx (cellular efflux):Na+ efflux (cellular influx):ATP hydrolysis was 2.8:1.8:1 in the LCPL, although 1.6:0.6:1 in the HCPL. The coupling ratio of Na+ influx:ATP hydrolysis in the HCPL increased to 2.8:1 in the presence of A23187. Moreover, the increase of ATP concentration enhanced not only the Na-ATPase activity in the LCPL and HCPL with monensin but also the Na+ influx in the LCPL. This ATP enhancement was not found, however, in the HCPL without ionophores. The ADP enhancement of the Na+ influx was not observed in either the HCPL or the LCPL. We conclude from these observations that there are at least two different phosphorylation-dephosphorylation cycles (an E2P cycle and an E*P cycle) in the PL in the absence of K+. The E2P cycle transports three Na+ from the extravesicular (cytoplasmic) to the intravesicular (extracellular) side and two Na+ in the opposite direction per cycle and is similar to the ATP-dependent Na+-Na+ exchange system already reported (Blostein, R. (1983) J. Biol. Chem. 258, 7948-7953; Cornelius, F., and Skou, J. C. (1985) Biochim. Biophys. Acta 818, 211-221). However, the E*P cycle transports one Na+ from the extravesicular to the intravesicular side/cycle and has not yet been previously reported.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources