Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins
- PMID: 30255232
- DOI: 10.1007/s00253-018-9382-x
Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins
Erratum in
-
Correction to: Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins.Appl Microbiol Biotechnol. 2021 Oct;105(19):7545-7546. doi: 10.1007/s00253-021-11572-9. Appl Microbiol Biotechnol. 2021. PMID: 34529115 No abstract available.
Abstract
Fungal diseases are a global public health problem. Invasive fungal infections pose a serious threat to patients with compromised immune systems, such as those undergoing organ or bone marrow transplants, cancer, or HIV/AIDS. Pneumocandins are antifungal lipohexapeptides of the echinocandin family that noncompetitively inhibit of 1,3-β-glucan synthase of fungal cell wall and provide the precursor for the semisynthesis of caspofungin, which is widely used as first-line therapy for invasive fungal infections. Recently, the biosynthetic steps leading to formation of pneumocandin B0 and echinocandin B have been elucidated, and thus, provide a framework and attractive model for further design new antifungal therapeutics around natural variations in echinocandin structural diversities via genetic and chemical tools. In this article, we analyze the biosynthetic pathway of pneumocandins and other echinocandins, provide an update on the array of pneumocandin analogues generated by genetic manipulation, and summarize advances in the enhancement of pneumocandin B0 production by random mutagenesis and fermentation optimization. We also give offer advice on the development of improved pneumocandin drug candidates and more efficient production of pneumocandin B0.
Keywords: Antifungal; Biosynthesis; Echinocandin; Fermentation; Pneumocandin.
Similar articles
-
Genetic Manipulation of the Pneumocandin Biosynthetic Pathway for Generation of Analogues and Evaluation of Their Antifungal Activity.ACS Chem Biol. 2015 Jul 17;10(7):1702-10. doi: 10.1021/acschembio.5b00013. Epub 2015 Apr 23. ACS Chem Biol. 2015. PMID: 25879325
-
Engineering of New Pneumocandin Side-Chain Analogues from Glarea lozoyensis by Mutasynthesis and Evaluation of Their Antifungal Activity.ACS Chem Biol. 2016 Oct 21;11(10):2724-2733. doi: 10.1021/acschembio.6b00604. Epub 2016 Aug 10. ACS Chem Biol. 2016. PMID: 27494047 Free PMC article.
-
Engineering of Glarea lozoyensis for exclusive production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate.Appl Environ Microbiol. 2015 Mar;81(5):1550-8. doi: 10.1128/AEM.03256-14. Epub 2014 Dec 19. Appl Environ Microbiol. 2015. PMID: 25527531 Free PMC article.
-
Structural diversity in echinocandin biosynthesis: the impact of oxidation steps and approaches toward an evolutionary explanation.Z Naturforsch C J Biosci. 2017 Jan 1;72(1-2):1-20. doi: 10.1515/znc-2016-0156. Z Naturforsch C J Biosci. 2017. PMID: 27705900 Review.
-
Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals.Microb Biotechnol. 2024 Jan;17(1):e14359. doi: 10.1111/1751-7915.14359. Epub 2023 Oct 26. Microb Biotechnol. 2024. PMID: 37885073 Free PMC article. Review.
Cited by
-
Oxidative modification of free-standing amino acids by Fe(II)/αKG-dependent oxygenases.Eng Microbiol. 2022 Nov 29;3(1):100062. doi: 10.1016/j.engmic.2022.100062. eCollection 2023 Mar. Eng Microbiol. 2022. PMID: 39628521 Free PMC article. Review.
-
Enzymatic Synthesis of l-threo-β-Hydroxy-α-Amino Acids via Asymmetric Hydroxylation Using 2-Oxoglutarate-Dependent Hydroxylase from Sulfobacillus thermotolerans Strain Y0017.Appl Environ Microbiol. 2021 Sep 28;87(20):e0133521. doi: 10.1128/AEM.01335-21. Epub 2021 Aug 4. Appl Environ Microbiol. 2021. PMID: 34347519 Free PMC article.
-
Apc.LaeA and Apc.VeA of the velvet complex govern secondary metabolism and morphological development in the echinocandin-producing fungus Aspergillus pachycristatus.J Ind Microbiol Biotechnol. 2020 Jan;47(1):155-168. doi: 10.1007/s10295-019-02250-x. Epub 2019 Nov 23. J Ind Microbiol Biotechnol. 2020. PMID: 31758414
-
Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle.Int J Mol Sci. 2023 Jul 6;24(13):11184. doi: 10.3390/ijms241311184. Int J Mol Sci. 2023. PMID: 37446362 Free PMC article. Review.
-
Regiodivergent Biocatalytic Hydroxylation of L-Glutamine Facilitated by Characterization of Non-Heme Dioxygenases from Non-Ribosomal Peptide Biosyntheses.Tetrahedron. 2021 Jun 18;90:132190. doi: 10.1016/j.tet.2021.132190. Epub 2021 May 8. Tetrahedron. 2021. PMID: 34366493 Free PMC article.
References
-
- Adefarati AA, Giacobbe RA, Hensens OD, Tkacz JS (1991) Biosynthesis of L-671,329, an echinocandin-type antibiotic produced by Zalerion arboricola: origins of some of the unusual amino acids and the dimethylmyristic acid side chain. J Am Chem Soc 113(9):3542–3545 - DOI
-
- Adefarati AA, Hensens OD, Jones ETT, Tkacz JS (1992) Pneumocandins from Zalerion arboricola. V. Glutamic acid-derived and leucine-derived amino-acids in pneumocandin A0 (L-671,329) and distinct origins of the substituted proline residues in pneumocandins A0 and B0. J Antibiot 45(12):1953–1957 - DOI
-
- Anonymous (2017) Stop neglecting fungi. Nat Microbiol 2:17120 - DOI
-
- Balkovec JM, Hughes DL, Masurekar PS, Sable CA, Schwartz RE, Singh SB (2014) Discovery and development of first in class antifungal caspofungin (CANCIDAS(R))--a case study. Nat Prod Rep 31(1):15–34 - DOI
-
- Cacho RA, Jiang W, Chooi YH, Walsh CT, Tang Y (2012) Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc 134(40):16781–16790 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical