Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 17;19(Suppl 1):83.
doi: 10.1186/s12863-018-0640-9.

Investigation of parent-of-origin effects induced by fenofibrate treatment on triglycerides levels

Affiliations

Investigation of parent-of-origin effects induced by fenofibrate treatment on triglycerides levels

Chloé Sarnowski et al. BMC Genet. .

Abstract

Background: Genome-wide association studies performed on triglycerides (TGs) have not accounted for epigenetic mechanisms that may partially explain trait heritability.

Results: Parent-of-origin (POO) effect association analyses using an agnostic approach or a candidate approach were performed for pretreatment TG levels, posttreatment TG levels, and pre- and posttreatment TG-level differences in the real GAW20 family data set. We detected 22 genetic variants with suggestive POO effects with at least 1 phenotype (P ≤ 10- 5). We evaluated the association of these 22 significant genetic variants showing POO effects with close DNA methylation probes associated with TGs. A total of 18 DNA methylation probes located in the vicinity of the 22 SNPs were associated with at least 1 phenotype and 6 SNP-probe pairs were associated with DNA methylation probes at the nominal level of P < 0.05, among which 1 pair presented evidence of POO effect. Our analyses identified a paternal effect of SNP rs301621 on the difference between pre- and posttreatment TG levels (P = 1.2 × 10- 5). This same SNP showed evidence for a maternal effect on methylation levels of a nearby probe (cg10206250; P = 0.01). Using a causal inference test we established that the observed POO effect of rs301621 was not mediated by DNA methylation at cg10206250.

Conclusions: We performed POO effect association analyses of SNPs with TGs, as well as association analyses of SNPs with DNA methylation probes. These analyses, which were followed by a causal inference test, established that the paternal effect at the SNP rs301621 is induced by treatment and is not mediated by methylation level at cg10206250.

Keywords: DNA methylation; Epigenetics; Fenofibrate treatment; Parent-of-origin effects; Triglycerides.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Analytic strategy

Similar articles

Cited by

References

    1. Ali O, Cerjak D, Kent JW, Jr, James R, Blangero J, Carless MA, Zhang Y. Methylation of SOCS3 is inversely associated with metabolic syndrome in an epigenome-wide association study of obesity. Epigenetics. 2016;11(9):699–707. doi: 10.1080/15592294.2016.1216284. - DOI - PMC - PubMed
    1. Das M, Irvin MR, Sha J, Aslibekyan S, Hidalgo B, Perry RT, Zhi D, Tiwari HK, Absher D, Ordovas JM, et al. Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study. Front Genet. 2015;6:304. doi: 10.3389/fgene.2015.00304. - DOI - PMC - PubMed
    1. Das M, Sha J, Hidalgo B, Aslibekyan S, Do AN, Zhi D, Sun D, Zhang T, Li S, Chen W, et al. Association of DNA methylation at CPT1A locus with metabolic syndrome in the genetics of lipid lowering drugs and diet network (GOLDN) study. PLoS One. 2016;11(1):e0145789. doi: 10.1371/journal.pone.0145789. - DOI - PMC - PubMed
    1. Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130(7):565–572. doi: 10.1161/CIRCULATIONAHA.114.009158. - DOI - PMC - PubMed
    1. Lai CQ, Wojczynski MK, Parnell LD, Hidalgo BA, Irvin MR, Aslibekyan S, Province MA, Absher DM, Arnett DK, Ordovás JM, et al. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res. 2016;57(12):2200–2207. doi: 10.1194/jlr.M069948. - DOI - PMC - PubMed

Publication types