Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019;143(1):3-7.
doi: 10.1159/000492825. Epub 2018 Sep 26.

The Future: Experimental Therapies for Renal Disease in Diabetes

Affiliations
Review

The Future: Experimental Therapies for Renal Disease in Diabetes

Georgia E Fouli et al. Nephron. 2019.

Abstract

Diabetic nephropathy is the commonest cause of end-stage renal disease and affects between 30 and 45% of patients with diabetes mellitus. There is no cure for diabetic nephropathy and the current management of this condition includes glycaemic control, blockade of the renin-angiotensin aldosterone system and lifestyle changes. However, many patients eventually progress to end-stage renal disease. The exact pathogenesis of diabetic nephropathy is still being researched, and recent advances have led to the development of several novel potential therapeutic targets. There are a number of different experimental therapies that are currently being assessed. Generally, these can be separated into drugs targeting vasculature/haemodynamic effects, drugs targeting inflammation and drugs targeting oxidative stress. Drugs targeting the vasculature include Tie-2 activators, -sodium-glucose transport protein 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) agonists. Anti-inflammatory therapies include inflammatory cytokines inhibitors, pentoxifylline, as well as anti-transforming growth factor α/-epiregulin therapies. Finally, anti-oxidative stress therapies include nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors and allopurinol. Many new trials are providing promising results and it is likely that some of these therapies will be available for clinical use within the next decade. This article will seek to outline the main advancements in each of these experimental therapies for diabetic nephropathy. Results: Abnormal vascular remodelling, inflammation and oxidative stress seem to be the 3 main sources from which future new drugs for diabetic kidney disease will originate.

Keywords: Chronic kidney disease; Diabetic nephropathy; Treatment.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources