The metabolic response of the Bradypus sloth to temperature
- PMID: 30258712
- PMCID: PMC6151113
- DOI: 10.7717/peerj.5600
The metabolic response of the Bradypus sloth to temperature
Abstract
Poikilotherms and homeotherms have different, well-defined metabolic responses to ambient temperature (T a ), but both groups have high power costs at high temperatures. Sloths (Bradypus) are critically limited by rates of energy acquisition and it has previously been suggested that their unusual departure from homeothermy mitigates the associated costs. No studies, however, have examined how sloth body temperature and metabolic rate vary with T a . Here we measured the oxygen consumption (VO2) of eight brown-throated sloths (B. variegatus) at variable T a 's and found that VO2 indeed varied in an unusual manner with what appeared to be a reversal of the standard homeotherm pattern. Sloth VO2 increased with T a , peaking in a metabolic plateau (nominal 'thermally-active zone' (TAZ)) before decreasing again at higher T a values. We suggest that this pattern enables sloths to minimise energy expenditure over a wide range of conditions, which is likely to be crucial for survival in an animal that operates under severe energetic constraints. To our knowledge, this is the first evidence of a mammal provisionally invoking metabolic depression in response to increasing T a 's, without entering into a state of torpor, aestivation or hibernation.
Keywords: Arboreal folivore; Bradypus; Energetics; Metabolic depression; Metabolic rate; Sloth; Temperature response.
Conflict of interest statement
The authors declare there are no competing interests. Rebecca N. Cliffe, Sarah J. Kennedy, Judy A. Avey-Arroyo and Daniel Mindich are volunteers for the The Sloth Sanctuary of Costa Rica and/or the Sloth Conservation Foundation.
Figures

Similar articles
-
Sloths like it hot: ambient temperature modulates food intake in the brown-throated sloth (Bradypus variegatus).PeerJ. 2015 Apr 2;3:e875. doi: 10.7717/peerj.875. eCollection 2015. PeerJ. 2015. PMID: 25861559 Free PMC article.
-
Sloth metabolism may make survival untenable under climate change scenarios.PeerJ. 2024 Sep 27;12:e18168. doi: 10.7717/peerj.18168. eCollection 2024. PeerJ. 2024. PMID: 39351373 Free PMC article.
-
Fatal disseminated toxoplasmosis in a brown-throated sloth (Bradypus variegatus) from Northern Brazil - Case report.Acta Vet Hung. 2020 Sep 30;68(3):285-288. doi: 10.1556/004.2020.00049. Acta Vet Hung. 2020. PMID: 33128522
-
The role of sloths and anteaters as Leishmania spp. reservoirs: a review and a newly described natural infection of Leishmania mexicana in the northern anteater.Parasitol Res. 2019 Apr;118(4):1095-1101. doi: 10.1007/s00436-019-06253-6. Epub 2019 Feb 15. Parasitol Res. 2019. PMID: 30770980 Review.
-
IDLY INFECTED: A REVIEW OF INFECTIOUS AGENTS IN POPULATIONS OF TWO- AND THREE-TOED SLOTHS (CHOLOEPUS SPECIES AND BRADYPUS SPECIES).J Zoo Wildl Med. 2021 Jan;51(4):789-798. doi: 10.1638/2018-0188. J Zoo Wildl Med. 2021. PMID: 33480559 Review.
Cited by
-
A Horse of a Different Color?: Tensile Strength and Elasticity of Sloth Flexor Tendons.Integr Org Biol. 2020 Oct 26;2(1):obaa032. doi: 10.1093/iob/obaa032. eCollection 2020. Integr Org Biol. 2020. PMID: 33796818 Free PMC article.
-
Muscle architectural properties indicate a primary role in support for the pelvic limb of three-toed sloths (Bradypus variegatus).J Anat. 2023 Sep;243(3):448-466. doi: 10.1111/joa.13884. Epub 2023 May 15. J Anat. 2023. PMID: 37190673 Free PMC article.
-
Mammalian maxilloturbinal evolution does not reflect thermal biology.Nat Commun. 2023 Jul 21;14(1):4425. doi: 10.1038/s41467-023-39994-1. Nat Commun. 2023. PMID: 37479710 Free PMC article.
-
The behaviour and activity budgets of two sympatric sloths; Bradypus variegatus and Choloepus hoffmanni.PeerJ. 2023 May 29;11:e15430. doi: 10.7717/peerj.15430. eCollection 2023. PeerJ. 2023. PMID: 37273542 Free PMC article.
-
Coming to grips with life upside down: how myosin fiber type and metabolic properties of sloth hindlimb muscles contribute to suspensory function.J Comp Physiol B. 2021 Jan;191(1):207-224. doi: 10.1007/s00360-020-01325-x. Epub 2020 Nov 19. J Comp Physiol B. 2021. PMID: 33211164
References
-
- Angilletta MJ. Thermal adaptation: a theoretical and empirical synthesis, thermal adaptation: a theoretical and empirical synthesis. Oxford University Press; Oxford: 2009. - DOI
-
- Briscoe NJ, Handasyde KA, Griffiths SR, Porter WP, Krockenberger A, Kearney MR, Bartholomew G, Adolph E, Maloney S, Dawson T, Kearney M, Shine R, Porter W, Sears M, Raskin E, Angilletta M, Ellis W, Melzer A, Clifton I, Carrick F, Plessis K du, Martin R, Hockey P, Cunningham S, Ridley A, Carrascal L, Díaz J, Huertas D, Mozetich I, Meehl G, Tebaldi C, Williams S, Shoo L, Isaac J, Hoffmann A, Langham G, Huey R, Kearney M, Krockenberger A, Holtum J, Jess M, Williams S, Gordon G, Brown A, Pulsford T, Degabriele R, Dawson T, Krockenberger A, Edwards W, Kanowski J, Porter W, Kearney M, Peinke D, Brown C, Sargeant G, Eberhardt L, Peek J, Matthews A, Lunney D, Gresser S, Maitz W, Crowther M, Lunney D, Lemon J, Stalenberg E, Wheeler R, Madani G, Ross K, Ellis M, Pincebourde S, Woods H, Derby R, Gates D, Vines R. Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biology Letters. 2014;10:39–45. doi: 10.1098/rsbl.2014.0235. - DOI - PMC - PubMed
-
- Britton SW, Atkinson WE. Poikilothermism in the sloth. Journal of Mammalogy. 1938;19:94–99. doi: 10.2307/1374287. - DOI
-
- Brody S, Lardy HA. Bioenergetics and growth. Journal of Physical Chemistry A. 1946;50:168–169. doi: 10.1021/j150446a008. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources