Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov;14(44):e1802624.
doi: 10.1002/smll.201802624. Epub 2018 Sep 27.

Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires

Affiliations

Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires

Yun-Lu Sun et al. Small. 2018 Nov.

Abstract

Protein-based electronic materials have numerous potential advantages with respect to sustainability and biocompatibility over electronic materials that are synthesized using harsh chemical processes and/or which contain toxic components. The microorganism Geobacter sulfurreducens synthesizes electrically conductive protein nanowires (e-PNs) with high aspect ratios (3 nm × 10-30 µm) from renewable organic feedstocks. Here, the integration of G. Sulfurreducens e-PNs into poly(vinyl alcohol) (PVA) as a host polymer matrix is described. The resultant e-PN/PVA composites exhibit conductivities comparable to PVA-based composites containing synthetic nanowires. The relationship between e-PN density and conductivity of the resultant composites is consistent with percolation theory. These e-PNs confer conductivity to the composites even under extreme conditions, with the highest conductivities achieved from materials prepared at pH 1.5 and temperatures greater than 100 °C. These results demonstrate that e-PNs represent viable and sustainable nanowire compositions for the fabrication of electrically conductive composite materials.

Keywords: Geobacter sulfurreducens; microbial nanowires; nanomaterials; pili; polymer nanocomposites.

PubMed Disclaimer

Publication types

LinkOut - more resources