Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Sep;46(5):339-347.
doi: 10.5152/TJAR.2018.01947. Epub 2018 Sep 1.

Building on the Shoulders of Giants: Is the use of Early Spontaneous Ventilation in the Setting of Severe Diffuse Acute Respiratory Distress Syndrome Actually Heretical?

Affiliations
Review

Building on the Shoulders of Giants: Is the use of Early Spontaneous Ventilation in the Setting of Severe Diffuse Acute Respiratory Distress Syndrome Actually Heretical?

Fabrice Petitjeans et al. Turk J Anaesthesiol Reanim. 2018 Sep.

Abstract

Acute respiratory distress syndrome (ARDS) is not a failure of the neurological command of the ventilatory muscles or of the ventilatory muscles; it is an oxygenation defect. As positive pressure ventilation impedes the cardiac function, paralysis under general anaesthesia and controlled mandatory ventilation should be restricted to the interval needed to control the acute cardio-ventilatory distress observed upon admission into the critical care unit (CCU; "salvage therapy" during "shock state"). Current management of early severe diffuse ARDS rests on a prolonged interval of controlled mechanical ventilation with low driving pressure, paralysis (48 h, too often overextended), early proning and positive end-expiratory pressure (PEEP). Therefore, the time interval between arrival to the CCU and switching to spontaneous ventilation (SV) is not focused on normalizing the different factors involved in the pathophysiology of ARDS: fever, low cardiac output, systemic acidosis, peripheral shutdown (local acidosis), supine position, hypocapnia (generated by hyperpnea and tachypnea), sympathetic activation, inflammation and agitation. Then, the extended period of controlled mechanical ventilation with paralysis under general anaesthesia leads to CCU-acquired pathology, including low cardiac output, myoneuropathy, emergence delirium and nosocomial infection. The stabilization of the acute cardio-ventilatory distress should primarily itemize the pathophysiological conditions: fever control, improved micro-circulation and normalized local acidosis, 'upright' position, minimized hypercapnia, sympathetic de-activation (normalized sympathetic activity toward baseline levels resulting in improved micro-circulation with alpha-2 agonists administered immediately following optimized circulation and endotracheal intubation), lowered inflammation and 'cooperative' sedation without respiratory depression evoked by alpha-2 agonists. Normalised metabolic, circulatory and ventilatory demands will allow one to single out the oxygenation defect managed with high PEEP (diffuse recruitable ARDS) under early spontaneous ventilation (airway pressure release ventilation+SV or low-pressure support). Assuming an improved overall status, PaO2/FiO2≥150-200 allows for extubation and continuous non-invasive ventilation. Such fast-tracking may avoid most of the CCU-acquired pathologies. Evidence-based demonstration is required.

Keywords: APRV; ARDS; alpha-2 agonist; clonidine; controlled mechanical ventilation; cooperative sedation; dexmedetomidine; high PEEP; low tidal volume; pressure support; spontaneous breathing; sympathetic de-activation; transpulmonary pressure.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: L Quintin holds US patent 8 703 697 B2 for the treatment of early severe diffuse acute respiratory distress syndrome. The other authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195:1253–63. doi: 10.1164/rccm.201703-0548ST. - DOI - PubMed
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. - PubMed
    1. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16. doi: 10.1056/NEJMoa1005372. - DOI - PubMed
    1. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68. doi: 10.1056/NEJMoa1214103. - DOI - PubMed
    1. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8. doi: 10.1164/ajrccm.159.4.9806077. - DOI - PubMed

LinkOut - more resources