Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct;34(10):1316-1324.
doi: 10.1016/j.cjca.2018.07.479. Epub 2018 Aug 4.

Whole-Gene Duplication of PCSK9 as a Novel Genetic Mechanism for Severe Familial Hypercholesterolemia

Affiliations
Free article

Whole-Gene Duplication of PCSK9 as a Novel Genetic Mechanism for Severe Familial Hypercholesterolemia

Michael A Iacocca et al. Can J Cardiol. 2018 Oct.
Free article

Abstract

Background: Familial hypercholesterolemia (FH) is a common genetic disorder of severely elevated low-density lipoprotein (LDL) cholesterol, characterized by premature atherosclerotic cardiovascular disease. Although copy number variations (CNVs) are a large-scale mutation-type capable of explaining FH cases, they have been, to date, assessed only in the LDLR gene. Here, we performed novel CNV screening in additional FH-associated genes using a next-generation sequencing-based approach.

Methods: In 704 patients with FH, we sequenced FH-associated genes APOB, PCSK9, LDLRAP1, APOE, STAP1, LIPA, and ABCG5/8 using our LipidSeq targeted next-generation sequencing panel. Bioinformatic tools were applied to LipidSeq data for CNV screening, and identified CNVs were validated using whole-exome sequencing and microarray-based copy number analyses.

Results: We identified a whole-gene duplication of PCSK9 in 2 unrelated Canadian FH index cases; this PCSK9 CNV was also found to cosegregate with affected status in family members. Features in affected individuals included severely elevated LDL cholesterol levels that were refractory to intensive statin therapy, pronounced clinical stigmata, premature cardiovascular events, and a plasma PCSK9 of approximately 5000 ng/mL in 1 index case. We found no CNVs in APOB, LDLRAP1, APOE, STAP1, LIPA, and ABCG5/8 in our cohort of 704 FH individuals.

Conclusions: Here, we report the first description of a CNV affecting the PCSK9 gene in FH. This finding is associated with a profound FH phenotype and the highest known plasma PCSK9 level reported in a human. This finding also has therapeutic relevance, as elevated PCSK9 levels may limit the efficacy of high-dose statin therapy and also PCSK9 inhibition.

PubMed Disclaimer

Comment in

Publication types

Grants and funding

LinkOut - more resources