Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 1;35(4):1058-1065.
doi: 10.1519/JSC.0000000000002852.

Cardiovascular Effects of Compression Garments During Uncompensable Heat Stress

Affiliations

Cardiovascular Effects of Compression Garments During Uncompensable Heat Stress

Joshua Bautz et al. J Strength Cond Res. .

Abstract

Bautz, J, Hostler, D, Khorana, P, and Suyama, J. Cardiovascular effects of compression garments during uncompensable heat stress. J Strength Cond Res 35(4): 1058-1065, 2021-This study examined the potential hemodynamic benefits of wearing lower extremity compression garments (CGs) beneath thermal protective clothing (TPC) worn by wildland firefighters, while exercising in a heated environment. Using in a counterbalanced design, 10 male subjects ([mean ± SD] age 27 ± 6 years, height 1.78 ± 0.09 m, body mass 74.8 ± 7.0 kg, body fat 10.6 ± 4.2%, and V̇o2max 57.8 ± 9.3 ml·kg-1·min-1) completed control (no CG) and experimental (CG) conditions in randomly assigned order. Protocols were separated by a minimum of 3 days. Subjects exercised for 90 minutes (three, 30-minute segments) on a treadmill while wearing wilderness firefighter TPC and helmet in a heated room. Venous blood was drawn before and after exercise to measure hemoglobin (Hgb), hematocrit (Hct), serum osmolarity (OSM), and serum creatine phosphokinase (CPK). Vital signs and perceptual measures of exertion and thermal comfort were recorded during the protocol. Data were analyzed by the paired t-test. There were no differences in the change in heart rate (84 ± 27 vs. 85 ± 14 b·min-1, p = 0.9), core temperature rise (1.8 ± 0.6 vs. 1.9 ± 0.5° C, p = 0.39), or body mass lost (-1.72 ± 0.78 vs. -1.77 ± 0.58 kg, p = 0.7) between the conditions. There were no differences in the change in Hgb (0.49 ± 0.66 vs. 0.33 ± 1.11 g·dl-1, p = 0.7), Hct (1.22 ± 1.92 vs. 1.11 ± 3.62%, p = 0.9), OSM (1.67 ± 6.34 vs. 6.22 ± 11.39 mOsm·kg-1, p = 0.3), or CPK (22.2 ± 30.2 vs. 29.8 ± 19.4 IU·L-1, p = 0.5). Total distance walked (3.9 ± 0.5 vs. 4.0 ± 0.5 miles, p = 0.2), exercise interval (88.6 ± 3.5 vs. 88.4 ± 3.6 minutes, p = 0.8), and perceptual measures were similar between conditions. Compression garments worn beneath TPC did not acutely alter the physiologic response to exertion in TPC. With greater use in the general public related to endurance activities, the data neither encourage nor discourage CG use during uncompensable heat stress.

PubMed Disclaimer

References

    1. Ali A, Caine MP, Snow BG. Graduated compression stockings: Physiological and perceptual responses during and after exercise. J Sports Sci 25: 413–419, 2007.
    1. Ayling JH. Regional rates of sweat evaporation during leg and arm cycling. Br J Sports Med 20: 35–37, 1986.
    1. Bringard A, Denis R, Belluye N, Perrey S. Effects of compression tights on calf muscle oxygenation and venous pooling during quiet resting in supine and standing positions. J Sports Med Phys Fitness 46: 548–554, 2006.
    1. Colburn D, Suyama J, Reis SE, Morley JL, Goss FL, Chen YF, et al. A comparison of cooling techniques in firefighters after a live burn evolution. Prehosp Emerg Care 15: 226–232, 2011.
    1. Coris EE, Ramirez AM, Van Durme DJ. Heat illness in athletes: The dangerous combination of heat, humidity and exercise. Sports Med 34: 9–16, 2004.

LinkOut - more resources