Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities
- PMID: 30279002
- PMCID: PMC6879187
- DOI: 10.1016/j.jbiomech.2018.09.009
Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities
Abstract
Traditional laboratory experiments, rehabilitation clinics, and wearable sensors offer biomechanists a wealth of data on healthy and pathological movement. To harness the power of these data and make research more efficient, modern machine learning techniques are starting to complement traditional statistical tools. This survey summarizes the current usage of machine learning methods in human movement biomechanics and highlights best practices that will enable critical evaluation of the literature. We carried out a PubMed/Medline database search for original research articles that used machine learning to study movement biomechanics in patients with musculoskeletal and neuromuscular diseases. Most studies that met our inclusion criteria focused on classifying pathological movement, predicting risk of developing a disease, estimating the effect of an intervention, or automatically recognizing activities to facilitate out-of-clinic patient monitoring. We found that research studies build and evaluate models inconsistently, which motivated our discussion of best practices. We provide recommendations for training and evaluating machine learning models and discuss the potential of several underutilized approaches, such as deep learning, to generate new knowledge about human movement. We believe that cross-training biomechanists in data science and a cultural shift toward sharing of data and tools are essential to maximize the impact of biomechanics research.
Keywords: Data science; Machine learning; Musculoskeletal; Neuromuscular.
Copyright © 2018. Published by Elsevier Ltd.
Figures



Similar articles
-
The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility.J Am Med Inform Assoc. 2015 Nov;22(6):1120-5. doi: 10.1093/jamia/ocv071. Epub 2015 Aug 13. J Am Med Inform Assoc. 2015. PMID: 26272077 Free PMC article.
-
Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.J Sports Sci. 2019 Mar;37(5):568-600. doi: 10.1080/02640414.2018.1521769. Epub 2018 Oct 11. J Sports Sci. 2019. PMID: 30307362
-
Explainable AI Elucidates Musculoskeletal Biomechanics: A Case Study Using Wrist Surgeries.Ann Biomed Eng. 2024 Mar;52(3):498-509. doi: 10.1007/s10439-023-03394-9. Epub 2023 Nov 9. Ann Biomed Eng. 2024. PMID: 37943340 Free PMC article.
-
Role of machine learning in gait analysis: a review.J Med Eng Technol. 2020 Nov;44(8):441-467. doi: 10.1080/03091902.2020.1822940. Epub 2020 Oct 20. J Med Eng Technol. 2020. PMID: 33078988 Review.
-
Perspective on "in the wild" movement analysis using machine learning.Hum Mov Sci. 2023 Feb;87:103042. doi: 10.1016/j.humov.2022.103042. Epub 2022 Dec 6. Hum Mov Sci. 2023. PMID: 36493569
Cited by
-
Reliability of 3D Depth Motion Sensors for Capturing Upper Body Motions and Assessing the Quality of Wheelchair Transfers.Sensors (Basel). 2022 Jun 30;22(13):4977. doi: 10.3390/s22134977. Sensors (Basel). 2022. PMID: 35808471 Free PMC article.
-
Intelligent prediction of kinetic parameters during cutting manoeuvres.Med Biol Eng Comput. 2019 Aug;57(8):1833-1841. doi: 10.1007/s11517-019-02000-2. Epub 2019 Jun 15. Med Biol Eng Comput. 2019. PMID: 31203500
-
Rollator usage lets young individuals switch movement strategies in sit-to-stand and stand-to-sit tasks.Sci Rep. 2023 Oct 6;13(1):16901. doi: 10.1038/s41598-023-43401-6. Sci Rep. 2023. PMID: 37803010 Free PMC article.
-
Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task.Sensors (Basel). 2021 Jun 26;21(13):4383. doi: 10.3390/s21134383. Sensors (Basel). 2021. PMID: 34206782 Free PMC article.
-
Automating the Clinical Assessment of Independent Wheelchair Sitting Pivot Transfer Techniques.Top Spinal Cord Inj Rehabil. 2021 Fall;27(3):1-11. doi: 10.46292/sci20-00050. Epub 2021 Aug 13. Top Spinal Cord Inj Rehabil. 2021. PMID: 34456542 Free PMC article.
References
-
- Ahlrichs C, Samà A, Lawo M, Cabestany J, Rodríguez-Martín D, Pérez-López C, Sweeney D, Quinlan LR, Laighin GÒ, Counihan T, Browne P, Hadas L, Vainstein G, Costa A, Annicchiarico R, Alcaine S, Mestre B, Quispe P, Bayes À, Rodríguez-Molinero A, 2016. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med. Biol. Eng. Comput 54, 223–233. 10.1007/s11517-015-1395-3. - DOI - PubMed
-
- Akaike H, 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723. 10.1109/TAC.1974.1100705. - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous