Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan;252(1 Pt 2):H22-31.
doi: 10.1152/ajpheart.1987.252.1.H22.

Differentiation of sarcoplasmic reticulum during cardiac myogenesis

Differentiation of sarcoplasmic reticulum during cardiac myogenesis

W Pegg et al. Am J Physiol. 1987 Jan.

Abstract

The composition and function of fetal and mature sheep cardiac sarcoplasmic reticulum membranes were investigated. Phospholamban, a major phosphoprotein in the mature sarcoplasmic reticulum membranes, was present in early stages of cardiac myogenesis. This fetal form of phospholamban was phosphorylated by cAMP-dependent protein kinase but not in the presence of Ca2+ and calmodulin. Ca2+ uptake and Ca2+-dependent ATPase activity were low in fetal sarcoplasmic reticulum compared with the adult controls, although the apparent affinities for Ca2+ were similar. Sarcoplasmic reticulum vesicles isolated at all developmental stages had very low levels of plasma membrane (as determined by Na+-K+-ATPase and Na+-Ca2+ exchanger activities) and mitochondrial contamination. Sarcoplasmic reticulum Ca2+ uptake and Ca2+-dependent ATPase activities were not affected by micromolar concentrations of vanadate, and the accumulated Ca2+ could not be released by the addition of NaCl. The amount of both the 110- and 55-kDa protein bands, identified with specific antibodies as Ca2+-ATPase and calsequestrin, respectively, was low in early stages of cardiac myogenesis. Age-related differences in the Ca2+ transport properties of cardiac sarcoplasmic reticulum and in the amount of the Ca2+-ATPase and calsequestrin may explain alterations in the regulation of intracellular Ca2+ concentrations in the fetal heart. This may contribute to the developmental changes in myocardial function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources